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Summary

 

An approach for synthesizing buckling results and behavior for long, balanced and unbalanced sym-
metric laminates that are subjected to uniform heating or cooling and that are fully restrained against
thermal expansion or contraction is presented.  This approach uses a nondimensional analysis for infi-
nitely long, flexurally anisotropic plates that are subjected to combined mechanical loads and is based
on useful nondimensional parameters.  In addition, stiffness-weighted laminate thermal-expansion
parameters are derived that are used to determine critical temperature changes in terms of physically
intuitive mechanical buckling coefficients, and the effects of membrane orthotropy and membrane
anisotropy are included.  Many results are presented for some common laminates that are intended to
facilitate a structural designer

 

’

 

s transition to the use of the generic buckling design curves that are pre-
sented in the paper.  Several generic buckling design curves are presented that provide physical insight
into the buckling response in addition to providing useful design data.  Examples are presented that
demonstrate the use of the generic design curves.   The analysis approach and generic results indicate
the effects and characteristics of laminate thermal expansion, membrane orthotropy and anisotropy, and
flexural orthotropy and anisotropy in a very general and unifying manner.
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nondimensional buckling coefficient associated with the critical value of a 
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ment field at buckling (see eq. (22))
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eqs. (18) through (21)), respectively

 

t
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u,v plate inplane displacements (see fig. 2(a)), in.
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) out-of-plane displacement field at buckling defined by equation (22), in.
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plate rectangular coordinate system (see fig. 1), in.
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    coefficient of thermal expansion for an isotropic material, 1/°F

αx, αy, αxy overall laminate coefficients of thermal expansion (see eq. (25)), 1/°F

 stiffness-weighted laminate coefficients of thermal expansion (see 
eqs. (41) through (43), respectively), 1/°F
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α∞, β, γ, δ nondimensional parameters defined by equations (1), (2), (3), and (4), 
respectively

ε0, ε1 symbols that define the distribution of the inplane bending load (see fig. 1 
and eq. (5))

η = y/b, ξ = x/λ nondimensional plate coordinates

θ fiber angle (see fig. 9), deg

Θ0    temperature change (see eq. (25)), °F

critical value of temperature change, °F

λ half-wavelength of buckling mode (see fig. 1), in.

λ/b buckle aspect ratio (see fig. 1)

λcr critical value of buckling mode half-wavelength, in.

λcr/b critical value of buckle aspect ratio

ν Poisson’s ratio for an isotropic material (see table 1)

νLT lamina major Poisson’s ratio (see table 2)

Φm(η) basis functions (see eqs. (22) through (24))  

Introduction

Buckling behavior of laminated-composite plates that are subjected to combined mechanical
and  thermal loads is an important consideration in the preliminary design of contemporary, high-
performance aerospace vehicles.  The sizing of many structural subcomponents of these vehicles is
often determined by buckling constraints.  One subcomponent that is of practical importance in struc-
tural design is the long rectangular plate.  These plates commonly appear as elements of stiffened panels
that are used for wing structures and as semimonocoque shell segments that are used for fuselage struc-
tures.  Buckling results for infinitely long plates are important because they often provide a practical
estimate of the behavior of finite-length rectangular plates, and they also provide information that is
useful in explaining the behavior of these finite-length plates.  Moreover, knowledge of the behavior of
infinitely long plates can provide insight into the buckling behavior of more complex structures such as
stiffened panels.

An important type of long plate that appears as a component of contemporary composite structures
is the symmetrically laminated plate.  In the present paper, the term “symmetrically laminated”  refers to
composite plates in which every lamina above the plate midplane has a corresponding lamina located at
the same distance below the plate midplane, with the same thickness, material properties, and fiber ori-
entation.  Symmetrically laminated plates are essentially flat after the manufacturing process
and  exhibit flat prebuckling deformation states, which is desirable for many applications.  More
importantly, the amenability of these plates to structural tailoring provides symmetrically laminated
plates with a significant potential for reducing the weight of aerospace vehicles or for meeting special

Θ0
cr
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performance requirements.  Thus, understanding the buckling behavior of symmetrically laminated
plates in a very broad manner is an important part of the search for ways to exploit plate orthotropy and
anisotropy to reduce structural weight or to fulfill a special design requirement.

For many practical cases, symmetrically laminated plates exhibit specially orthotropic behavior.
However, in some cases, such as thin-walled [±45]s  laminates that are candidates for spacecraft appli-
cations, these plates exhibit anisotropy in the form of material-induced coupling between pure bending
and twisting deformations.  This coupling is referred to herein as flexural anisotropy, and it generally
yields buckling modes that are skewed in appearance (see fig. 1), even when inplane shear loads are
absent. Symmetrically laminated plates that are unbalanced are also being investigated for special-
purpose uses in aerospace structures.  These laminated plates exhibit anisotropy in the form of material-
induced coupling between pure inplane dilatation and inplane shear deformations, in addition to flexural
anisotropy.  This coupling is referred to herein as membrane anisotropy, and it generally yields com-
bined inplane stress states for simple loadings like uniform edge compression when inplane displace-
ment constraints are imposed on one or more edges of a plate.  For example, when the edges of an
unbalanced, symmetrically laminated plate, such as a [+452/0/90]s laminate, are totally restrained
against thermal expansion and contraction that is caused by uniform heating or cooling, inplane shear
stresses are developed in addition to the usual tensile or compressive stresses that are often present in
balanced laminates. These kinematically induced shear stresses may be relatively large in magnitude,
compared to the direct compressive stresses, and as a result, may greatly affect the buckling behavior of
the plate and amplify the skewed appearance of the buckling modes that is caused by flexural
anisotropy.

The effects of flexural orthotropy and flexural anisotropy on the buckling behavior of long rectan-
gular plates that are subjected to single and combined mechanical loading conditions are becoming bet-
ter understood.  For example, recent in-depth parametric studies that show the effects of flexural
orthotropy and flexural anisotropy on the buckling behavior of long plates that are subjected to
compression, shear, pure inplane bending, and various combinations of these loads have been presented
in references 1–3.  The results presented in these references indicate that the importance of flexural
anisotropy on the buckling resistance of long plates varies with the magnitude and character of the com-
bined loading condition.  Similar results for plates loaded by uniform shear and a general linear distribu-
tion of axial load across the plate width have also been presented in reference 4.  In a similar manner,
the effects of membrane orthotropy and membrane anisotropy on the buckling behavior of long rectan-
gular plates that are restrained against axial thermal expansion and contraction and subjected to uniform
heating or cooling and mechanical loads have been presented in reference 5.  This extensive work has
provided a better understanding of the load interaction effects of balanced and unbalanced, symmetri-
cally laminated plates that are subjected to mechanical loads and restrained against axial thermal expan-
sion and contraction. 

Although an extensive body of work exists that addresses the thermal-buckling behavior of plates
(see ref. 5 for a literature review), a broad understanding of the effects of orthotropy and anisotropy on
their response has not yet been obtained.  In particular, the effects of membrane orthotropy and mem-
brane anisotropy on the buckling behavior of long rectangular plates that are fully restrained against
thermal expansion and contraction and subjected to uniform heating or cooling are not well understood
for the large variety of laminated plates that exist and the variety of support conditions that are possible.
One objective of the present paper is to present a more intuitive buckling analysis for balanced and
unbalanced, symmetrically laminated plates that are fully restrained against thermal expansion and
contraction and subjected to uniform heating or cooling.  To achieve this goal, the buckling analysis is
formulated in terms of buckling coefficients for the known, mechanically equivalent loads and stiffness-
weighted laminate thermal-expansion parameters instead of in terms of a less intuitive thermal buckling
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coefficient. Thus, the present study is a continuation or extension of the work that is presented in
reference 5.  The analysis procedure is based on classical laminated-plate theory, which neglects
transverse-shear flexibility and is applied to long plates herein.  However, the analysis procedure is
applicable to finite-length plates and to more sophisticated plate buckling theories that include effects
like transverse-shear flexibility.  

Two other objectives of the present paper are to present a wide range of buckling results in terms of
useful nondimensional design parameters and to provide a means for comparing the buckling-response
characteristics of seemingly dissimilar laminated plates.  Other objectives are to identify the effects of
orthotropy and anisotropy on the buckling behavior of long symmetrically laminated plates that are sub-
jected to the same loading conditions, and to present some previously unknown results.  In particular,
new results are presented for plates with the two long edges clamped or simply supported and with all
edges fully restrained against inplane movement.  Several generic buckling-design curves that are appli-
cable to a wide range of laminate constructions are presented that use the nondimensional parameters
described in references 1–6, along with some other parameters that are derived subsequently.  Finally,
examples are presented that demonstrate the use of the generic buckling-design curves and the analysis
procedure.

Analysis Description

In preparing generic design charts for buckling of a single flat, thin plate, a special-purpose analysis
is often preferred over a general-purpose analysis code, such as a finite-element code, because of the
cost and effort that is usually involved in generating a large number of results with a general-purpose
code.  The results presented in the present paper were obtained by using such a special-purpose buckling
analysis that is based on classical laminated-plate theory.  The analysis details are lengthy; hence, only a
brief description of the buckling analysis is presented herein.  First, the buckling analysis for long plates
that are subjected to a general set of mechanical loads is described.  Next, the mechanical loads that are
induced by fully restrained thermal expansion and contraction and that are used in the buckling analysis
are derived, and an expression for the critical temperature change is presented in terms of the corre-
sponding critical loading parameter and mechanical-buckling coefficients.

Buckling Analysis

Symmetrically laminated plates can have many different constructions because of the wide variety
of material systems, fiber orientations, and stacking sequences that can be selected to construct a lami-
nate.  A convenient way of coping with the large number of choices for laminate constructions is to use
nondimensional parameters to understand overall behavioral trends and sensitivities of the structural
behavior to variations in laminate construction.  The buckling analysis used in the present paper is based
on classical laminated-plate theory and the classical Rayleigh-Ritz method and is derived explicitly in
terms of the nondimensional parameters defined in references 1–6.  This approach was motivated by the
need for generic (independent of a specific laminate construction) parametric results for composite-
plate buckling behavior that are expressed in terms of the minimum number of independent parameters
needed to fully define the behavior and that indicates the overall trends and sensitivity of the results to
changes in the parameters.  The nondimensional parameters that were used to formulate the buckling
analysis are given by

(1)
   

α ∞ = b
λ

D11
D22

1/4
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(2)

(3)

(4)

where b is the plate width and λ is the half-wavelength of the buckle pattern of an infinitely long plate
(see fig. 1).  The subscripted D-terms are the bending stiffnesses of classical laminated-plate theory (see
ref. 7 or 8).  The parameters α∞ and β characterize the flexural orthotropy, and the parameters γ and δ
characterize the flexural anisotropy.

The mechanical loading conditions that are included in the buckling analysis are uniform transverse
tension or compression, uniform shear, and a general linear distribution of axial load across the plate
width, as depicted in figure 1.  Typically, an axial stress resultant distribution is partitioned into a uni-
form part and a pure bending part; however, this representation is not unique.  The longitudinal stress
resultant Nx is partitioned in the analysis into a uniform tension or compression part and a linearly vary-
ing part that corresponds to eccentric inplane bending loads.  This partitioning is given by

(5)

where Nxc denotes the intensity of the constant-valued tension or compression part of the load, and the
term containing Nb defines the intensity of the eccentric inplane bending load distribution.  The symbols
ε0 and ε1 define the distribution of the inplane bending load, and the symbol η is the nondimensional
coordinate given by η = y/b.  This particular way of partitioning the longitudinal stress resultant was
used for convenience by eliminating the need to calculate the uniform and pure bending parts of an axial
stress resultant distribution prior to performing a buckling analysis.

The analysis is based on a general formulation that includes combined destabilizing loads that are
proportional to a positive-valued loading parameter  that is increased until buckling occurs and inde-
pendent subcritical combined loads that remain fixed at a specified load level for which buckling does
not occur.  Herein, the term “subcritical load”  is defined as any load that does not cause buckling to
occur.  In practice, the subcritical loads are applied to a plate prior to and independent of the destabiliz-
ing loads, with an intensity below that which will cause the plate to buckle.  Then, with the subcritical
loads fixed, the active, destabilizing loads are applied by increasing the magnitude of the loading
parameter until buckling occurs.  This approach permits certain types of combined-load interaction to be
investigated in a direct and convenient manner.  For example, in analyzing the stability of an aircraft
fuselage, the nondestabilizing transverse tension load in a fuselage panel that is caused by cabin
pressurization can be considered to remain constant and, as a result, can be represented as a passive,
subcritical load.  The combined shear, compression, and inplane bending loads that are caused by flight
maneuvers can vary and cause buckling and, as a result, can be represented as active, destabilizing
loads.

   β =
D12 + 2D66

(D11 D22)1/2

   γ =
D16

(D11
3 D22)1/4

   δ =
D26

(D11 D22
3 )1/4

   N x = N xc – N b[ε0 + (ε1 – ε0)η]

p
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The distinction between the active, destabilizing and passive, subcritical loading systems is imple-
mented in the buckling analysis by partitioning the prebuckling stress resultants as follows:

(6)

(7) 

(8)

(9)

where the stress resultants with the subscript 1 are the destabilizing loads and those with the subscript 2
are the subcritical loads.  The sign convention used herein for positive values of these stress resultants is
shown in figure 1.  In particular, positive values of the general linear edge stress distribution parameters
Nb1, Nb2, ε0, and ε1 correspond to compression loads.  Negative values of Nb1 and Nb2 or negative val-
ues of either ε0 or ε1 yield linearly varying stress distributions that include tension.  Depictions of a vari-
ety of inplane bending load distributions are given in reference 4.  The two normal stress resultants of
the system of destabilizing loads,  and are defined to be positive-valued for compression
loads.  This convention results in positive eigenvalues being used to indicate instability due to uniform
compression loads.

The buckling analysis includes several nondimensional stress resultants associated with equa-
tions (6) through (9).  These dimensionless stress resultants are given by

 (10)

 (11)

 (12)

 (13)

where the subscript  j takes on the values of 1 and 2.  In addition, the destabilizing loads are expressed in
terms of the loading parameter  in the analysis by

(14)

(15)

  N xc = –N x1
c + N x2

c

  N y = –N y1 + N y2

  N xy = N xy1 + N xy2

  N b = N b1 + N b2

  N x1
c

  N y1,

   
nxj

c =
N xj

c b2

π2(D11 D22)1/2

   
n yj =

N yj b2

π2 D22

   
nxyj =

N xyj b2

π2(D11 D22
3 )1/4

   
nbj =

N bj b2

π2(D11 D22)1/2

p

  nx1
c = L1 p

  n y1 = L2 p
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(16)

(17)

where L1 through L4 are load factors that determine the specific form (relative contributions of the load
components) of a given system of destabilizing loads.  Typically, the dominant load factor is assigned a
value of 1 and all others are given as positive or negative fractions.

Nondimensional buckling coefficients that are used herein are given by the values of the dimension-
less stress resultants of the system of destabilizing loads at the onset of buckling; that is,

(18)

(19)

(20)

(21)

where quantities enclosed in the parentheses with the subscript “cr”  are critical values that correspond to
buckling, and  is the magnitude of the loading parameter at buckling.  Positive values of the coeffi-
cients  and  correspond to uniform compression loads, and the coefficient  corresponds to
uniform positive shear.  The direction of a positive shear stress resultant that acts on a plate is shown in
figure 1.  The coefficient  corresponds to the specific inplane bending load distribution defined by
the selected values of the parameters    and   (see fig. 1).

The mathematical expression used in the variational analysis to represent the general off-center and
skewed buckle pattern is given by

(22)

where  and   are nondimensional coordinates,   is the out-of-plane displacement
field, and  and  are the unknown displacement amplitudes.  In accordance with the Rayleigh-
Ritz method, the basis functions  are required to satisfy the kinematic boundary conditions on
the plate edges at  η = 0  and η = 1.  For the simply supported plates, the basis functions used in the anal-
ysis are given by

(23)

  nxy1 = L3 p

  nb1 = L4 p

   
Kx ≡ nx1

c
cr

=
N x1

c
cr

b2

π2(D11 D22)1/2
= L1 pcr

   
K y ≡ n y1 cr

=
N y1 cr

b2

π2D22
= L2 pcr

   
Ks ≡ nxy1 cr

=
N xy1 cr

b2

π2(D11 D22
3 )1/4

= L3 pcr

   
Kb ≡ nb1 cr

=
N b1 cr

b2

π2(D11 D22)1/2
= L4 pcr

  pcr
 Kx  K y  Ks

 Kb
  ε0   ε1

   
wN (ξ,η) = (Am sin πξ + Bm cos πξ)Φm(η)Σ

m = 1

N

   ξ = x/λ    η = y /b  wN
 Am  Bm

   Φm(η)

   Φm(η) = sin mπη
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for values of  m = 1, 2, 3, ..., N.  Similarly, for the clamped plates, the basis functions are given by

 (24)

For both boundary conditions, the two long edges of a plate are free to move inplane.

Algebraic equations that govern the buckling behavior of infinitely long plates are obtained by sub-
stituting the series expansion for the buckling mode given by equation (22) into a nondimensionalized
form of the second variation of the total potential energy and then by computing the integrals appearing
in the nondimensional second variation in closed form.  The resulting equations constitute a generalized
eigenvalue problem that depends on the aspect ratio of the buckle pattern λ/b (see fig. 1) and the nondi-
mensional parameters and nondimensional stress resultants defined herein.  The smallest eigenvalue of
the problem corresponds to buckling and is found by specifying a value of λ/b and solving the corre-
sponding generalized eigenvalue problem for its smallest eigenvalue.  This process is repeated for suc-
cessive values of λ/b until the overall smallest eigenvalue is found.  The value of λ/b that corresponds to
the overall smallest eigenvalue is denoted herein by λcr/b.

Results that were obtained from the analysis described herein for uniform compression, uniform
shear, pure inplane bending (given by  = −1 and  = 1), and various combinations of these mechan-
ical loads have been compared with other results for isotropic, orthotropic, and anisotropic plates that
were obtained by using other analysis methods.  These comparisons are discussed in references 1–3, and
in every case the results described herein were found to be in good agreement with those obtained from
other analyses.  Likewise, results were obtained for isotropic and specially orthotropic plates that are
subjected to a general linear distribution of axial load across the plate width and compared with results
that were obtained by seven different authors (see ref. 4).  In every case, the agreement was good; that
is, all had less than a 5 percent difference and most less than a 2 percent difference.  More recently,
results obtained for symmetrically laminated, balanced anisotropic angle-ply plates with the buckling
analysis described herein (given in ref. 4) were compared to experiments in reference 9.  The analytical
results in reference 4 show a set of complex, nonintuitive buckling interaction curves, for plates loaded
by inplane bending and shear, that are skewed substantially because of the presence of flexural
anisotropy.  The experimental results verify the unusual trends of the highly skewed buckling interac-
tion curves, and the agreement between analysis and test appears to be very good.

Prebuckling Stresses and Critical Temperature Change

Uniformly heated or cooled plates that are symmetrically laminated and restrained against thermal
expansion and contraction may develop internal mechanical loads that can cause buckling.  These
induced mechanical loads enter the analysis through the membrane constitutive equations. The standard
form of these membrane constitutive equations for thin plates, which is based on classical laminated-
plate theory, is found in references 7 and 8 and is expressed in terms of membrane stiffness coefficients
and fictitious thermal stress resultants. In the present study, the membrane constitutive equations are
used in an inverted form that uses the overall laminate coefficients of thermal expansion and the
membrane compliance coefficients (see ref. 8). This form of the membrane constitutive equations for
symmetrically laminated plates is given by 

(25)

   Φm (η) = cos(m – 1)πη – cos(m + 1)πη

  ε0   ε1

   u, x
v, y

u, y + v, x

=
a11 a12 a16
a12 a22 a26
a16 a26 a66

N x
N y
N xy

+
α x
α y
α xy

Θ0
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where u(x,y) and v(x,y) are the prebuckling, inplane displacements in the x- and y-coordinate directions,
respectively (see fig. 2); , , and  are the overall laminate coefficients of thermal expansion;
the subscripted a-terms are the plate membrane compliance coefficients;  is the magnitude of the
uniform temperature change from a predetermined stress- and strain-free reference state; and commas
followed by a subscript denote partial differentiation with respect to the coordinate associated with the
subscript. For restrained thermal expansion and contraction problems, the plates are assumed to be sup-
ported and loaded such that the prebuckling stress field is uniform. With this assumption, a compatible
displacement field is obtained directly by integrating equations (25).  This integration yields

(26)

(27)

and

(28)

where g1 through g4 are constants that are determined from the boundary conditions.

Equations (26)–(28) can be used to determine the thermally induced mechanical loadings for sev-
eral problems of practical interest. The problems consist of plates restrained against axial thermal
expansion or contraction (see ref. 5), plates restrained against transverse thermal expansion or contrac-
tion (y-coordinate direction), and plates restrained against axial and transverse thermal expansion and
contraction.  In the present paper, however, only plates that are fully restrained against axial and trans-
verse thermal expansion and contraction are considered.  For this case, all the subcritical loads are zero-
valued and Nx(x,y) =  Ny(x,y) = −Ny1, and Nxy(x,y) = Nxy1 (see fig. 2).  All the stress resultants are
induced by the fully restrained thermal expansion and, when considered together, are destabilizing.
Upon substitution of these relationships, the displacements given by equations (26) and (27) become

(29)

 (30)

and equation (28) becomes

 (31)

Enforcing the restraint condition (displacement boundary condition)  gives 
Similarly, enforcing the restraint condition  gives  Enforcing  gives

 (32)

  α x   α y   α xy
  Θ0

   u (x,y) = a11 N x + a12 N y + a16 N xy + α x Θ0 x + g1y + g2

   v (x,y) = a12 N x + a22 N y + a26 N xy + α y Θ0 y + g3x + g4

   g1 + g3 = a16 N x + a26 N y + a66 N xy + α xy Θ0

Nx1
c

,–

   u (x,y) = – a11 N x1
c – a12 N y1 + a16 N xy1 + α x Θ0 x + g1y + g2

   v (x,y) = – a12 N x1
c – a22 N y1 + a26 N xy1 + α y Θ0 y + g3 x + g4

   g1 + g3 = – a16 N x1
c – a26 N y1 + a66 N xy1 + α xy Θ0

  u (0,y) = 0   g1 = g2 = 0.
  v (x,0) = 0   g3 = g4 = 0.   u (a,y) = 0

   – a11 N x1
c – a12 N y1 + a16 N xy1 + α x Θ0 = 0
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which yields u(x,y) = 0. Similarly, enforcing  gives 

 (33)

which yields v(x,y) = 0. Substituting g1 = g3 = 0 into equation (31) gives

 (34)

The thermally induced stress resultants for this problem are obtained by solving equations (32)–(34) for
  and Nxy1. The solution is given by

 (35)

 (36)

 (37)

where the subscripted A-terms are the membrane stiffnesses of classical laminated-plate theory.  Equa-
tions (35)–(37) define a combined loading state that is induced by restrained thermal expansion and
contraction. These equations show that each of the thermally induced mechanical loads depends on all
three laminate coefficients of thermal expansion and that positive values for the compressive stress
resultants are possible even for negative values of Θ0 (uniform cooling) and vice versa.  For example, a
laminate could have a negative value of αx and still have a positive value of  (axial compression).
Thus, the signs of Θ0 and the parenthetical quantities in equations (35)–(37) must be considered in for-
mulating the buckling problem. 

The buckling problem is posed by first substituting equations (35)–(37) into equations (10)–(12),
respectively, to obtain expressions for the nondimensional stress resultants that can be used to character-
ize the thermally induced mechanical loads.  In particular, the nondimensional stress resultants are
expressed in terms of stiffness-weighted laminate thermal-expansion parameters denoted by  
and   These expressions, with the use of equations (14)–(16), are given by

 (38)

(39)

(40)

  v (x,b) = 0

   – a12 N x1
c – a22 N y1 + a26 N xy1 + α y Θ0 = 0

   – a16 N x1
c – a26 N y1 + a66 N xy1 + α xy Θ0 = 0

  N x1
c ,   N y1,

   N x1
c = A11α x + A12α y + A16α xy Θ0

   N y1 = A12α x + A22α y + A26α xy Θ0

   N xy1 = – A16α x + A26α y + A66α xy Θ0

  N x1
c

  α 1,   α 2,
  α 3.

   nx1
c = 12b2

π2t2 α 1Θ0 = L1 p

   n y1 = 12b2

π2t2 α 2Θ0 = L2 p

   nxy1 = 12b2

π2t2 α 3Θ0 = L3 p
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where

 (41)

  (42)

(43)

where t is the plate thickness.  Note that the stiffness-weighted coefficients of thermal expansion have
the same units as the laminate and lamina coefficients of thermal expansion. 

Equations (10)–(12) and (38)–(40) indicate that   and Nxy1 are positive-valued when 
 and  are positive-valued, respectively, and when Θ0 is positive-valued. Similarly,  

and Nxy1 are negative-valued when   and  are positive-valued, respectively, and Θ0 is
negative-valued, or when   and  are negative-valued, respectively, and Θ0 is positive-
valued.  Next, equations (38)–(40) are substituted into equations (18)–(20) to obtain the relationships
between the mechanical-buckling coefficients, the load factors, and the critical temperature  that
is,

 (44)

(45)

(46)

where the critical eigenvalue  for a given set of flexural boundary
conditions.   

The next step in posing the buckling problem is to define the load factors L1, L2, and L3 that appear
in equations (38)–(40) and (44)–(46).  These load factors define the relative proportions of the thermally
induced mechanical loads.  It is important to reiterate that positive, negative, and zero values for 
correspond to positive, negative, and zero values for  respectively (see fig. 2(b)).  Similarly,  posi-
tive, negative, and zero values for  correspond to positive, negative, and zero values for 
respectively; and positive, negative, and zero values for  correspond to positive, negative, and
zero values for Nxy1, respectively. To define the load factors properly, the signs of   and Nxy1
must be considered.  Specifically, the load factors must be defined such that positive values of L1, L2,
and L3 correspond to positive values of   and Nxy1, respectively (see fig. 1(a)).  Moreover,
both positive and negative values of  Θ0 must be considered.  These requirements lead to six cases that
must be considered in formulating the buckling analysis; that is, the cases for which 

  with   with   with  and
 with  The buckling analysis for each of these cases is presented subsequently.

   
α 1 =

t2(A11α x + A12α y + A16α xy)

12 D11D22

   
α 2 =

t2(A12α x + A22α y + A26α xy)

12D22

   
α 3 = –

t2(A16α x + A26α y + A66α xy)

12(D11 D22
3 )1/4

  N x1
c ,   N y1,   α 1,

  α 2,   α 3   N x1
c ,   N y1,

  α 1,   α 2,   α 3
  α 1,   α 2,   α 3

  Θ0
cr;

   Kx ≡ nx1
c

cr
= 12b2

π2t2 α 1Θ0
cr = L1 pcr

   K y ≡ n y1 cr
= 12b2

π2t2 α 2Θ0
cr = L2 pcr

   Ks ≡ nxy1 cr
= 12b2

π2t2 α 3Θ0
cr = L3 pcr

   pcr = pcr β, γ, δ, L1, L2, L3

  α 1Θ0
  N x1
c ,

  α 2Θ0   N y1,
  α 3Θ0

  N x1
c ,   N y1,

  N x1
c ,   N y1,

  α 1Θ0 > 0,
  α 1Θ0 < 0,   α 1 = 0   α 2Θ0 > 0,   α 1 = 0   α 2Θ0 < 0,   α 1 = α 2 = 0   α 3Θ0 > 0,
  α 1 = α 2 = 0   α 3Θ0 < 0.
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Case 1.  For the case in which  the stress resultant  and  L1 = 1 is appropriate
(induced axial compression).  The values for the other two load factors that are needed to completely
define the prebuckling stress state are obtained by dividing equations (19) and (20) by equation (18),
with L1 = 1, or by dividing equations (39) and (40) by equation (38). This step yields

(47)

(48)

For an isotropic material, A11 = A22, A16 = A26 = 0,  D11 = D22, αx = αy, αxy = 0, and these expressions
reduce to  L2 = 1  and  L3 = 0.  With  L1 = 1 and  L2 and  L3  defined by equations (47) and (48), the rela-
tionship between the critical value of the mechanical loading parameter  and the critical temperature

  is determined by equation (44); that is,

                                                (49)

where  for a given set of flexural boundary conditions.  It is important to
point out that equation (49) yields positive and negative values for  for positive and negative values
of  respectively.  Moreover, it is important to reiterate that the relationship between  and the
corresponding mechanical buckling coefficients Kx, Ky, and Ks is given by equations (49), (45), and
(46), respectively.

Case 2.  For the case when  the stress resultant  and  L1 = −1 is appropriate
(induced axial tension).  As for the previous case, the values for the other two load factors that are
needed to completely define the prebuckling stress state are obtained by dividing equations (19) and
(20) by equation (18), but with L1 = −1, or by dividing equations (39) and (40) by equations (38). This
step yields

 (50)

(51)

With  L1 = −1 and  L2 and  L3  defined by equations (50) and (51), the relationship between the critical
value of the mechanical loading parameter  and the critical temperature   is again determined
by equation (44); that is,

                                               (52a)

  α 1Θ0 > 0,   N x1
c > 0

   
L2 =

N y1

N x1
c

D11
D22

1/2
=

α 2
α 1

=
A12α x + A22α y + A26α xy
A11α x + A12α y + A16α xy

D11
D22

1/2

   
L3 =

N xy1

N x1
c

D11
D22

1/4
=

α 3
α 1

= –
A16α x + A26α y + A66α xy
A11α x + A12α y + A16α xy

D11
D22

1/4

  pcr
  Θ0
cr

   Kx = 12b2

π2t2 α 1Θ0
cr = pcr

   pcr = pcr β, γ, δ, L1, L2, L3
  Θ0
cr

  α 1,   pcr

  α 1Θ0 < 0,   N x1
c < 0

   
L2 = –

N y1

N x1
c

D11
D22

1/2
= –

α 2
α 1

= –
A12α x + A22α y + A26α xy
A11α x + A12α y + A16α xy

D11
D22

1/2

   
L3 = –

N xy1

N x1
c

D11
D22

1/4
= –

α 3
α 1

=
A16α x + A26α y + A66α xy
A11α x + A12α y + A16α xy

D11
D22

1/4

  pcr   Θ0
cr

   Kx = 12b2

π2t2 α 1Θ0
cr = – pcr



14

In contrast to the previous case, equation (52a) yields positive values for  for negative values of
 and vice versa.  For laminates with L3 = 0 (balanced laminates) and L2 0 (no induced transverse

load or transverse tension), no destabilizing compression or shear loads are present, and buckling cannot
occur because the plate is in a state of uniaxial or biaxial tension.  In contrast, when L3 = 0 and L2 > 0, a
plate is subjected to axial tension and transverse compression.  Figures 29–31 of reference 1 indicate
that an infinitely long plate buckles as a wide column for this type of loading and that the buckling
coefficients Ky = 1 and Ky = 4 for simply supported and clamped plates, respectively.  With Ky known,
equations (45) and (52a) give

                                               (52b)

Case 3.  For a general symmetric laminate, the possibility exists that  which implies that
the stress resultant  that is, there is no axial expansion or contraction.  For this case, L1 = 0 is
appropriate and the sign of  must be considered in defining the nonzero load factors.  In particu-
lar, for   and  L1 = 0  and  L2 = 1  are appropriate (induced transverse compression).
The value for the load factor L3 that is needed to completely define the prebuckling stress state is
obtained by dividing equation (20) by equation (19), with L2 = 1, or by dividing equation (40) by equa-
tion (39). This step yields

(53)

The relationship between L3 and the mechanical-buckling coefficients Ky and Ks is shown in fig-
ures 24–27 of reference 1.  With  L1 = 0, L2 =1, and  L3  defined by equation (53), the relationship
between the critical value of the mechanical loading parameter  and the critical temperature   is
determined by equation (45); that is,

                                               (54a)

It is important to point out that equation (54a) yields positive and negative values for  for positive
and negative values of  respectively.  For laminates with L3 = 0 (balanced laminates) a plate is sub-
jected to only transverse compression. Thus, an infinitely long plate buckles as a wide column for this
type of loading, and the buckling coefficients Ky = 1 and Ky = 4 for simply supported and clamped
plates, respectively.  With Ky known, equation (45) gives

                                               (54b)

Case 4.  For the case when  and   the stress resultant  L1 = 0, and
L2 = −1 are appropriate (transverse tension).  As for the previous case, the value for the load factor L3
that is needed to completely define the prebuckling stress state is obtained by dividing equation (20) by
equation (19), with L2 = −1, or by dividing equation (40) by equation (39). This step yields

(55)

  Θ0
cr

  α 1, ≤

   Kx = 12b2

π2t2 α 1Θ0
cr = –

K y
L2

  α 1 = 0,

  N x1
c = 0;

  α 2Θ0
  α 2Θ0 > 0,   N y1 > 0

   
L3 =

N xy1
N y1

D22
D11

1/4
=

α 3
α 2

= –
A16α x + A26α y + A66α xy
A12α x + A22α y + A26α xy

D22
D11

1/4

  pcr   Θ0
cr

   K y = 12b2

π2t2 α 2Θ0
cr = pcr

  Θ0
cr

  α 2,

   12b2

π2t2 α 2Θ0
cr = K y

  α 1 = 0   α 2Θ0 < 0,   N y1 < 0,

   
L3 = –

N xy1
N y1

D22
D11

1/4
= –

α 3
α 2

=
A16α x + A26α y + A66α xy
A12α x + A22α y + A26α xy

D22
D11

1/4
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Like the previous case, the relationship between L3 and the mechanical-buckling coefficients Ky and Ks
is shown in figures 24–27 of reference 1.  With  L1 = 0, L2 = −1, and  L3  defined by equation (55), the
relationship between the critical value of the mechanical loading parameter  and the critical temper-
ature  is determined by equation (45); that is,

                                                 (56)

For this case, equation (56) yields positive values for  for negative values of  and vice versa.
For laminates with L3 = 0 (balanced laminates), no destabilizing compression or shear loads are present,
and buckling cannot occur because the plate is loaded by transverse tension only. 

Case 5.  For the case with  and  the stress resultants  and
 which implies that L1 = L2 = 0, and that  L3 = 1  is appropriate (positive shear loading as in

fig. 1(a)).  With  L1 = 0, L2 = 0, and  L3 = 1, the relationship between the critical value of the mechanical
loading parameter  and the critical temperature   is determined by equation (46); that is,

                                                 (57)  

Again, it is important to point out that equation (57) yields positive and negative values for  for
positive and negative values of  respectively.  In addition, values of the mechanical-buckling coef-
ficient Ks for several laminates are given in reference 1.

Case 6.  The final case to consider is when  and  For this case, the stress
resultants  and  which implies that L1 = L2 = 0, and that  L3 = −1  is appropri-
ate (negative shear loading).  With  L1 = 0, L2 = 0, and  L3 = −1, the relationship between the critical
value of the mechanical loading parameter  and the critical temperature   is again determined
by equation (46); that is,

                                                 (58)

In contrast to the previous case, equation (58) yields positive values for  for negative values of 
and vice versa.

It is important to mention that the approach used herein to define the prebuckling stress state and the
critical temperature  also applies for a more sophisticated plate theory, such as a first-order
transverse-shear deformation theory.  For this theory,  would depend also upon additional nondi-
mensional parameters that characterize the transverse-shear flexibility.  Thus, the only difference in the
results for the two plate bending theories is the actual value of  that is used in equations (44)–(46),
for a given problem.  It is also important to point out that  for a long plate does not depend on the
parameter  This fact has been shown in references 1–4.

Results for Isotropic Plates and Common Laminates

Results are presented in this section and in figures 3–16 that illustrate behavioral trends for isotropic
plates and for several common symmetrically laminated plates that are fully restrained against thermal
expansion and contraction and subjected to uniform heating or cooling.  In particular, results are

  pcr

  Θ0
cr

   K y = 12b2

π2t2 α 2Θ0
cr = – pcr

  Θ0
cr

  α 2

  α 1 = α 2 = 0   α 3Θ0 > 0,   N x1
c = N y1 = 0

  N xy1 > 0,

  pcr   Θ0
cr

   Ks = 12b2

π2t2 α 3Θ0
cr = pcr

  Θ0
cr

  α 3,

  α 1 = α 2 = 0   α 3Θ0 < 0.
  N x1
c = N y1 = 0   N xy1 < 0,

  pcr   Θ0
cr

   Ks = 12b2

π2t2 α 3Θ0
cr = – pcr

  Θ0
cr

  α 3

  Θ0
cr

  pcr

  pcr
  pcr

  α ∞.



16

presented first for plates made of typical aluminum, steel, titanium, brass, and copper (see table 1 for
properties).  Then, results are presented for several common balanced, symmetric laminates that are
made of  IM7/5260 graphite-bismaleimide material (see table 2 for properties); that is, 
quasi-isotropic laminates,  and  quasiorthotropic laminates, and 
angle-ply laminates, where a positive value of the lamina fiber angle θ is shown in figure 9.  The

 and  laminates are described as quasiorthotropic because of the presence
of a relatively small amount of flexural anisotropy.  Results are also presented for [±θ/0/90]s laminates
with angle plies and for a quasi-isotropic laminate whose principal material coordinate frame is rotated
by an angle θ; that is, [(±45/0/90) + θ]s.   In addition, results are presented for similar unbalanced,
symmetric laminates; primarily,     and
[+θ2/0/90]s laminates that exhibit a significant degree of membrane anisotropy in addition to flexural
anisotropy.  All of the results are based on classical laminated-plate theory, and the nominal ply thick-
ness used in the calculations was 0.005 in. 

Results for Isotropic Plates

Results for homogeneous, isotropic plates are obtained from the analysis presented herein by first
noting that for an isotropic material, the stiffness-weighted laminate thermal expansion parameters
reduce to  and  where α is the coefficient of thermal expansion and ν is
Poisson’s ratio.  Because  and  are positive valued for isotropic materials, it follows that the iso-
tropic plates that are subjected to fully restrained thermal expansion or contraction can buckle only
when subjected to uniform heating; that is, > 0.  The buckling equations for this case are obtained
by noting that   and by using equations (47)–(49).  These equations and considerations give
L1 = 1, L2 = 1, L3 = 0, and 

                                                 (59)

The condition  L1 = L2 = 1  means that  Moreover, the corresponding mechanical buckling
coefficients are given by

                                 (60)

where  D  denotes the bending stiffness for isotropic plates given by

                                                     (61)

Equations (59)–(61) are combined to give the relationship between that critical temperature change and
the mechanically equivalent critical loading; that is,

                                      (62)

For long simply supported plates,  and for long clamped plates  These results are
illustrated by the well-known Kx-Ky buckling interaction curves for isotropic plates that are shown in

   [(±45/0/90)m]s
   [(±45/02)m]s    [(±45/902)m]s    [(±θ)m]s

   [(±45/02)m]s    [(±45/902)m]s

  [(+452/0/90)m] s,   [(+452/02)m] s,   [(+452/902)m] s,    [(+θ)2m] s,

  α 3 = 0   α 1 = α 2 = α 1 + ν ,
  α 1   α 2

  Θ0
cr

  α 1Θ0 > 0

   Θ0
cr =

π2pcr

12 b/t 2α 1 + ν
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c = Ny1.
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c
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figure 3 (e.g., see ref. 10).  The solid line in this figure represents plates with simply supported edges,
and the dashed line is for plates with clamped edges.  The load factor L2 generally appears implicitly as
the slope of a line emanating from the origin of the graph.  The buckling coefficients that correspond to
a given value of  L2 are determined by the point of intersection of the line and the appropriate buckling
interaction curve.  Points of intersection that occur on the horizontal portion of the curves, given by
Ky = 1 and Ky = 4 for the simply supported and clamped plates, respectively, correspond to wide-
column-like buckling modes.  The points of intersection that correspond specifically to L2 = 1 are
depicted in figure 3 for the simply supported and clamped plates by the open and filled circular symbols,
respectively.

Results are presented in figure 4 that show the critical temperature change  for uniform heating
of steel and aluminum plates, as a function of the plate width-to-thickness ratio b/t.  The solid lines in
this figure are for plates with simply supported edges and the dashed lines are for plates with clamped
edges.  Moreover, the gray and black lines correspond to results for aluminum and steel plates, respec-
tively.  As expected, the plates with clamped edges are more buckling resistant than the corresponding
plates with simply supported edges.  As indicated by equation (59), the magnitude of  shown in the
figure decreases proportionally to the inverse square of b/t.  

Additional results that are applicable to the entire class of isotropic materials and the full range of
b/t are presented in figure 5.  Several curves are shown in this figure that give the critical temperature

change  as a function of the coefficient of thermal expansion α for values of Poisson’s ratio ν

given by  The solid lines in this figure are for plates with simply supported edges and the

dashed lines are for plates with clamped edges.  Also shown on the figure by the circular, square, and

diamond-shaped symbols are values of  for typical aluminum, steel, titanium, magnesium,

copper, and brass engineering metals (see table 1 for properties).  These curves indicate that 
decreases with increasing values for α and increasing values for ν, with the decrease being more pro-
nounced for the clamped plates than for the simply supported plates, as expected. 

Results for Common Laminates

Results are presented in figures 6–7 and tables 3–8 that give the stiffness-weighted laminate thermal
expansion parameter  × 106 and the load factor ratio  as a function of the number of laminate
plies for several balanced and unbalanced, symmetric laminates.  In particular, the black solid lines in
the figures are for the   and  balanced, symmetric lami-
nates, and three of the gray dashed lines are for the   and

 unbalanced, symmetric laminates.  The symbols shown in the figures correspond to the
actual values for a given number of laminate plies.  A major difference between these two groups of
laminates is the presence of membrane anisotropy in the laminates of the second group that is caused by
orienting all the 45° plies in the same direction.  In addition, the flexural anisotropy is much greater in
the unbalanced laminates than in the corresponding balanced laminates.  Results are also presented for

 and    unbalanced, symmetric laminates in tables 9 and 10, respectively,
and with two additional gray dashed lines in figures 6 and 7.  Similarly, results are presented in figure 8
and tables 4, 6, 8, 9, and 10 that show the shear-load-factor ratio  as a function of the number of
laminate plies for the same unbalanced, symmetric laminates. The solid black lines in figure 8 are for
the   and  laminates, and the dashed gray lines are
for the  and   laminates.  The reason for presenting  and  in

  Θ0
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figures 7 and 8, respectively, is that these quantities determine the mechanical-buckling load factors L2
(see eqs. (47) and (50)) and L3 (see eqs. (48) and (51)), respectively, that are used to determine the criti-
cal temperature change when  is nonzero.  Recall that these buckling load factors are nondimen-
sional measures of the relative proportions of the thermally induced destabilizing loads.

The results in figure 6 and tables 3–10 indicate that the values of  are all positive. Thus, these
laminates are loaded by axial compression when uniformly heated and by axial tension when uniformly
cooled (see eqs. (38) and (10)).  The results also show equal values of  for the  and

 laminates, for the  and  laminates, and for the
 and  laminates, respectively.  The largest values of  are exhibited

by the  and  laminates and the smallest by the  and
 laminates.  The results also show, for the most part, relatively small variations in 

with the number of laminate plies, with the largest variations exhibited by the  and
 laminates.

The results in figure 7 and tables 3–10 indicate that the values of  are all positive, which
means that the values for  are positive because the values of  are all positive.  Thus, the
restrained thermal expansion or contraction induces a uniform compressive stress in the y-coordinate
direction for uniform heating and a uniform tension stress for uniform cooling (see eqs. (39) and (11)).
The results also show equal values of  for the  and  laminates, for
the   and  laminates, and for the  and 
laminates, respectively.  In addition, the values of  for the  quasi-isotropic lami-
nates converge to a value of one as the number of plies increases, that is, the result for an isotropic plate.

  The largest values of  are exhibited by the  and  laminates
( = 3.18) and the smallest by the  and  laminates ( = 0.32).
The results also show, to a large extent, relatively small variations in  with the number of lami-
nate plies.  However, the results in figure 7 also show a substantial, monotonically increasing variation
in  with the number of laminate plies for the   and 
laminates.

The results in figure 8 and in tables 4, 6, 8, 9, and 10 also indicate that the values of  are all
positive, which means that the values for  are positive because the values of  are all positive.
Thus, the restrained thermal expansion and contraction induces a uniform positive shear stress (see
fig. 2(b)) for uniform heating and a uniform negative shear stress for uniform cooling (see eqs. (40) and
(12)).  The results also show nearly equal values of  for the  and 
laminates for m > 2.  The largest values of  are exhibited by the  laminates
( = 0.53) and the smallest by the  laminates ( = 0.15).  The results in fig-
ure 8 also show relatively small variations in  with the number of laminate plies.  The largest
variation in  with the number of laminate plies is exhibited by the  laminates.

Three curves that are presented in figures 9 and 10 and results presented in tables 11–16 show the
stiffness-weighted laminate thermal expansion parameter  and load factor ratio  as a function
of the fiber angle, 0°  θ  90°, for  [±θ/0/90]s, [(±45/0/90) + θ]s balanced laminates and for

 and [+θ2/0/90]s unbalanced laminates.  Specifically, the black solid lines in the figures are
for the  and laminates and are independent of the value of the stacking sequence
number m.  The dashed lines represent the [±θ/0/90]s  and [+θ2/0/90]s laminates, and the solid gray
curves represent the [(±45/0/90) + θ]s laminates.  Likewise, results are presented in figure 11 and
tables 13 and 16 that show the shear-load-factor ratio  as a function of the fiber angle θ for the
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 and [+θ2/0/90]s unbalanced laminates.   In figure 11, the solid and dashed black curves are
for the  and [+θ2/0/90]s laminates, respectively.

The results in figure 9 and tables 11–16 indicate that all laminates exhibit > 0 for all values of  θ
considered. Thus, these laminates are also loaded by axial compression when uniformly heated and
by axial tension when uniformly cooled.  The largest and smallest values of  and the greatest varia-
tions are exhibited by the  and  laminates. Both the  and  and
the [±θ/0/90]s  and [+θ2/0/90]s laminates exhibit a monotonic increase in  with increasing values of
θ.  The values of for the [(±45/0/90) + θ]s laminates decrease monotonically with increasing values
of θ up to 45° and then increase monotonically.  Moreover, the solid gray curve for these laminates is
symmetric about the vertical line θ = 45°. 

The results in figure 10 and tables 11–16 indicate that the values of  are all positive, which
means that the values for  are positive because the values of  are all positive.  Thus, the
restrained thermal expansion and contraction induces a uniform transverse compressive stress Ny1 for
uniform heating and a uniform transverse tension stress for uniform cooling.  The largest and smallest
values of  and the greatest variations are exhibited by the  and  laminates.
Specifically, the largest and smallest values are given by = 14.39 and 0.07, respectively. Both
the  and  and the [±θ/0/90]s and [+θ2/0/90]s laminates exhibit a monotonic decrease
in  with increasing values of θ, approaching a value of zero.  The variation in the values of

with fiber angle for the [(±45/0/90) + θ]s laminates is benign compared to the other laminates. 

The results in figure 11 and tables 13 and 16 also indicate that the values of  are all positive,
which means that the values for  are positive because the values of  are all positive.  Thus, the
restrained thermal expansion and contraction induces a uniform positive shear stress for uniform heat-
ing and a uniform negative shear stress for uniform cooling.  Overall, the results show that the values of

 are greater for the  laminates than for the [+θ2/0/90]s laminates with respect to the
fiber angle θ.  In addition, the results show larger variations in  for both laminates for values of
the fiber angle less than approximately 45o.  The largest value of  exhibited by the 
laminates is given approximately by = 1.16 at approximately θ = 21°.  The largest value of

exhibited by the [+θ2/0/90]s laminates is given approximately by = 0.43 at approxi-
mately θ = 26o.

For all unbalanced laminates considered in figures 6–11, biaxial compression and positive shear
loading exist when the laminates are subjected to uniform heating.  For uniform cooling, biaxial tension
and negative shear loading exist in the laminates.  Moreover, a biaxial-compression stress state exists in
the balanced laminates subjected to uniform heating, and a biaxial-tension stress state exists in the
balanced laminates subjected to uniform cooling, which means that buckling cannot occur.  Further-
more, it was determined that elastic buckling does not occur for the unbalanced laminates considered in
figures 6–11 that are subjected to uniform cooling.  For these plates, when subjected to uniform cooling,
biaxial-tension stresses are induced that are substantially greater than the induced shearing stresses.

Results are presented in figures 12 and 13 and in tables 3–10 that show the critical temperature

change  for uniform heating as a function of the number of laminate plies for the

  and  balanced laminates and the 

   and  unbalanced laminates. Simi-

larly, results are presented in figures 14 and 15 and in tables 11–16 that show the critical temperature
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change for uniform heating as a function of the fiber angle θ for the [±θ]s,  and 

(m > 5) laminates and for the  [±θ/0/90]s, [+θ2/0/90]s, and  [(±45/0/90) + θ]s laminates, respectively.
The results in figures 12 and 13 correspond to results for plates with simply supported and clamped

edges, respectively.  The results were obtained by computing the ratios  and  first.  Next,

the load factors L2 and L3 were determined by using equations (47) and (48), respectively; then, the crit-

ical value of the loading parameter  was determined for each of the laminates, and the critical tem-
perature change was obtained by using equation (49).  Equations (47)–(49) were used because

 for these laminates when they are subjected to uniform heating.  For these laminates, the

critical value of the loading parameter depends on the flexural boundary conditions, the plate flexural
orthotropy and flexural anisotropy, and the values of the load factors L2 and L3, which depend on the
stiffness-weighted laminate thermal-expansion parameters.  The stiffness-weighted laminate thermal-
expansion parameters depend on the plate membrane orthotropy, membrane anisotropy, and the stiff-
nesses associated with pure bending action.

The results in figures 12 and 13 and in tables 3–10 indicate that the critical temperature 

is highly dependent on the arrangement of the 45°, 0°, and 90° plies. Generally, as the number of plies
increases, the magnitude of the critical temperature change decreases for about half of the laminates and
increases for the other half.  Overall, the plates with clamped edges are more buckling resistant than the
corresponding plates with simply supported edges, as expected.  The clamped and simply supported

 laminates require the most heating to cause buckling, and the simply supported

  and  laminates and the clamped  lami-

nates require the least amount of heating.

The results in figure 14 and tables 11–13 indicate that the critical temperature change  for

the [±θ]s,  and  (m > 5) laminates is highly dependent on the fiber angle θ.  In par-

ticular, the results for the clamped and simply supported [±θ]s and  (m > 5) laminates show
substantial increase in the critical temperature change with increasing θ for values up to approximately

55° and 62°, respectively, followed by a significant decrease.  In addition, the   (m > 5) lami-
nates require more heating to cause buckling than the corresponding [±θ]s laminates.   The results for the

 laminates show a monotonic increase in the critical temperature change with θ, but the tem-

perature changes are always ≤ those for the corresponding [±θ]s and  (m > 5) laminates.  Thus,

the  laminates generally require less heating to cause buckling than the other corresponding
laminates shown in figure 14.  Overall, the plates with clamped edges are much more buckling resistant
than the corresponding plates with simply supported edges, as expected.

The results in figure 15 and tables 14–16 indicate that the critical temperature change  for

the  [±θ/0/90]s, [+θ2/0/90]s, and  [(±45/0/90) + θ]s laminates is also highly dependent on the fiber angle
θ.  Specifically, the results for the [±θ/0/90]s laminates exhibit a trend similar to the results for the bal-
anced laminates shown in figure 14; that is, the clamped and simply supported [±θ/0/90]s laminates
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exhibit a substantial increase in the critical temperature change with increasing θ for values up to
approximately 57° and 67°, respectively, followed by a significant decrease.  Like the unbalanced
laminates of figure 14, the results for the [+θ2/0/90]s laminates show a monotonic increase in the
critical temperature change with θ, but the temperature changes are always ≤  those for the correspond-
ing [±θ/0/90]s laminates.  Thus, the [+θ2/0/90]s laminates require, for the most part, less heating to
cause buckling than the corresponding [±θ/0/90]s laminates.  Generally, the [(±45/0/90) + θ]s laminates
require more uniform heating to cause buckling than the other corresponding laminates shown in fig-
ure 15 and exhibit greater values of the critical temperature change over a larger range of θ.  Moreover,
the critical temperature change for the [(±45/0/90) + θ]s laminates exhibits the smallest variations with
fiber angle for the laminates shown in figure 15.  Like the laminates of figure 14, the laminates with
clamped edges in figure 15 are much more buckling resistant than the corresponding plates with simply
supported edges, as expected.

The data presented in figures 13–15 are given in a compact form and are applicable to an infinite
range of plate width-to-thickness ratios b/t.  Once the number of laminate plies is selected, the critical
temperature change  can be found as a function of the plate width  b  for a given laminate family.
However, it is important to keep in mind the limitations of classical laminated-plate bending theory as
the plate width-to-thickness ratio b/t becomes smaller than a value of approximately 20.  Results of this
type are useful in structural design and are shown for the  quasi-isotropic laminates
in figure 16.  Two sets of curves are shown for various values of the stacking sequence number m in fig-
ure 16.  Moreover, the results are shown for a maximum temperature-change magnitude of 300 °F.  This
maximum temperature-change magnitude was selected to ensure a regime of heating in which the mate-
rial behavior is linear.  The solid lines in these figures are for plates with simply supported edges, and
the dashed lines are for plates with clamped edges.  As indicated by equation (49), the magnitude of

 shown in the figure decreases proportionally to the inverse square of the plate width b. 

Generic Results and Examples

The simplicity of the equations presented herein that are like equation (49) in form suggested that
generic buckling design charts, similar to those presented in references 1–5, could be obtained for the
thermal buckling problem of the present study.  Specifically, generic design data can be obtained from
charts that show the stiffness-weighted laminate thermal-expansion parameters   and  the
flexural orthotropy parameter β; and the flexural anisotropy parameters γ and δ as a function of material
system and laminate stacking sequence and from charts that show the critical value of the loading
parameter  or buckling interaction curves, as a function of flexural boundary conditions, β, γ, δ, L1,
L2, and L3.  Results of this type illustrate the key aspects of the behavior and show overall trends and
sensitivity of the behavior to changes in the parameters.  Several figures that illustrate the utility of this
type of design data are presented subsequently.

Values of the Nondimensional Parameters 

Values of the nondimensional parameters that are used herein are presented in this section for
 quasi-isotropic,  angle-ply, and  unidirectional off-axis laminates.

Nine different contemporary material systems are used.  These material systems include boron-
aluminum, S-glass-epoxy, a typical boron-epoxy, AS4/3501-6 graphite-epoxy, AS4/3502 graphite-
epoxy, IM7/5260 graphite-bismaleimide, Kevlar 49-epoxy, IM7/PETI-5, and P-100/3502 pitch-epoxy
materials.  The mechanical properties of these material systems are presented in table 2 and the nominal
ply thickness is 0.005 in.  

  Θ0
cr

   [(±45/0/90)m]s

  Θ0
cr

  α 1,   α 2,   α 3;

  pcr

   [(±45/0/90)m]s    [(±θ)m]s    [(+θ)2m]s



22

Parameters for [±±±±45/0/90)m]s laminates.   Values of  and  for  quasi-
isotropic laminates are presented in figures 17 and 18, respectively, and in tables 17–19 for the nine
material systems.  The results show a wide variation in  with material system, for the laminate con-
sidered.  Moreover,  is positive for all the material systems except the P-100/3502 pitch-epoxy
material. Similarly, is positive for all the material systems and  1 ≤  < 1.2.  These values
for indicate that is also positive for all the material systems except the P-100/3502 pitch-
epoxy material.  Thus, the laminates made from all the material systems except the P-100/3502 pitch-
epoxy material are loaded by biaxial compression when uniformly heated and by biaxial tension when
uniformly cooled, and as a result can buckle only for uniform heating.  The laminates made from the
P-100/3502 pitch-epoxy material are loaded by biaxial tension when uniformly heated and by biaxial
compression when uniformly cooled.  These laminates must be cooled to buckle.  The results also show
that some material systems yield a slightly larger variation in  and  with the number of lami-
nate plies.  Overall, the results presented in figures 17 and 18 show that there is a wide range of possibil-
ities available for tailoring the thermal buckling characteristics of a laminate family.

The remaining parameters needed for a buckling analysis of the long  quasi-
isotropic laminates are the nondimensional flexural orthotropy parameter  β  and the flexural anisotropy
parameters  γ  and  δ.  Values for these parameters are not presented graphically herein but are given in

tables 20–23, along with values for  The parameters are presented graphically in refer-
ence 5 as a function of the stacking-sequence number  m  for the nine material systems, along with a dis-
cussion of their characteristics.   The results in reference 5 and tables 20–22 for these parameters show a
series of curves that approach  β = 1, γ = 0, and δ = 0 from above as the number of plies increases.  A
homogeneous, isotropic material has values of  β = 1, γ = 0, and δ = 0.  Thus, the results for β, γ, and δ in
reference 5 and tables 20–22 give, to some extent, a quantitative measure of quasi-isotropy. 

Parameters for [(±±±±θ)m]s and [(+θ)2m]s laminates. Values of   and  for  [(±θ)m]s  bal-
anced, angle-ply laminates and [(+θ)2m]s  unbalanced, unidirectional off-axis laminates composed of the
nine material systems are presented in figure 19 and table 24, figure 20 and table 25, and figure 21 and
table 26, respectively.  The values for  and  are identical for both laminate families and are inde-
pendent of the stacking sequence number m.  The results show a very wide variation in    and

with a material system and with fiber angle θ.  The largest variations are exhibited by  followed
by  Moreover,  and  are positive for all the material systems except the P-100/3502 pitch-
epoxy and Kevlar 49-epoxy materials, which are negative for several values of the fiber angle θ.  Simi-
larly,  is positive for all the material systems except the S-glass-epoxy and boron-epoxy materials,
which are negative for 0° < θ < 90°.  Thus, depending on the material system and fiber angle, a laminate
may be loaded by various combinations of tension, compression, and shear and may buckle when sub-
jected to uniform heating, cooling, or both.  This point is illustrated by the results in tables 27 and 28,
which show the values of   and  respectively, for selected values of θ.  Like the
results for the quasi-isotropic laminates, the results in figures 19–21 and in tables 24–26 show that there
is a very wide range of possibilities available for tailoring the thermal buckling characteristics of a lam-
inate family.

Values of the nondimensional orthotropy parameter β and the nondimensional anisotropy parame-
ters γ and δ  for the [(±θ)m]s laminates made of the same nine material systems have also been presented
graphically in reference 5.  The values of β in reference 5 for the [(±θ)m]s laminates are identical to the
corresponding results for the [(+θ)2m]s  unbalanced, unidirectional off-axis laminates and are indepen-
dent of the stacking-sequence number  m.  Numerical values of β for these laminates are presented in
table 29 for selected values of θ.  The results in reference 5 show a series of curves for  β  that vary dra-
matically with the fiber angle θ  and the material system.  The largest values of, and greatest variations
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in β  are generally exhibited by the laminates made of the P-100/3502 pitch-epoxy material.  In contrast,
the smallest values of, and least variations in β  are generally exhibited by the laminates made of the
boron-aluminum material.  The values of γ and δ for the [(±θ)m]s laminates are strongly dependent on
the stacking-sequence number  m. The results in reference 5 for the flexural anisotropy parameters  γ
and  δ  are for m = 1, which corresponds to the highest degree of flexural anisotropy for these laminates.
Corresponding numerical values of  γ  and  δ  for these laminates are presented in tables 30 and 31,

respectively, for selected values of  θ.  In addition, corresponding numerical values for 
that are used to compute the load factors L2 and L3 are presented in table 32. The graphical results in ref-
erence 5 show a large effect of the fiber angle θ  and the material system on the degree of flexural
anisotropy for the [±θ]s laminates.  Like the parameter β, the largest values of, and greatest variations in
γ  and  δ  are generally exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the
smallest values of, and least variations in γ  and  δ  are generally exhibited by the laminates made of the
boron-aluminum material.

 Values of the nondimensional anisotropy parameters γ and δ  for the [(+θ)2m]s laminates made of
the same nine material systems are presented in figure 22 and table 33 and in figure 23 and table 34,
respectively.  The results for these laminates are independent of the stacking sequence number m and
exhibit practically the same trends as the results for corresponding [±θ]s laminates that are given in
reference 5.  The values of γ and δ for the [(+θ)2m]s  laminates, however, are generally larger than
the  corresponding values for the [(±θ)m]s laminates.  This fact is illustrated in figure 24, which shows
a  comparison of results for  [(±θ)6]s, [±θ]s, and [(+θ)2m]s laminates made of IM7/5260 graphite-
bismaleimide material.  The results in this figure indicate that the [(+θ)2m]s unidirectional off-axis and
[±θ]s laminates exhibit similar variations with θ, but the [(+θ)2m]s laminates exhibit a substantially
higher degree of flexural anisotropy.  In addition, the results for the [(±θ)6]s laminates indicate that the
flexural anisotropy is negligible compared to that of the other laminates.

Buckling Coefficients and Critical Temperature Change

The values of the nondimensional parameters β, γ, and δ, given in reference 5 and presented in the
present paper, or from similar figures for other laminates, can be used to determine the buckling coeffi-
cients for plates subjected to uniform, combined mechanical loads.  More specifically, the critical load-
ing parameter  and the buckling coefficients Kx, Ky, and Ks depend on the parameters β, γ, and δ  for
classical laminated-plate theory (see ref. 1), the load factors L1, L2, and L3 that define the relative pro-
portions of the inplane loads, and the flexural boundary conditions.  For plates subjected to restrained
thermal expansion and contraction and uniform heating or cooling, the relative proportions of the
inplane loads that are induced by the restrained deformation are defined by the stiffness-weighted lami-
nate thermal-expansion parameters   and  (e.g., see eqs. (47) and (48)).  Thus, generic buck-
ling design charts for plates subjected to mechanical loads can be used directly to obtain critical
temperature changes for the thermal buckling problem considered herein and can be applied to a vast
range of laminate constructions that include hybrid laminates made of several materials.  Several of
these generic buckling design charts that are applicable to balanced and unbalanced, symmetric lami-
nates are presented subsequently.

Charts for balanced laminates.   Balanced laminates that are subjected to uniform heating or
cooling and that are fully restrained against thermal expansion or contraction develop, at most, a biaxial

stress state ( = 0).  When   and  are both positive valued, a laminate is loaded by uniform

biaxial compression when heated uniformly.  In contrast, when > 0 and  < 0, a laminate is

loaded by uniform axial compression and transverse tension (Ny1 < 0) when heated uniformly.  A
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similar stress state exists when < 0 and  > 0 and the laminate is uniformly cooled.  However, for

all three of these loading conditions, L1 = 1, L3 = 0, and L2 is given by equation (47).  The critical

temperature change  is obtained by dividing both sides of equation (49) by  once

 is known.  The appropriate value for  is obtained from generic buckling design

charts by noting that equations (44) and (45) give Kx =  and Ky = L2  respectively, and that
L2 = Ky/Kx.  Thus, the critical value of the loading parameter for balanced laminates can be obtained
from traditional Kx-Ky buckling interaction curves that are given as a function of the nondimensional
parameters β, γ, δ, and the flexural boundary conditions.

When   and  are both positive valued and the laminate is subjected to uniform cooling, or

when   and  are both negative valued and the laminate is subjected to uniform heating, a state of

biaxial tension exists in the laminate.  For this loading condition, elastic buckling is not possible.  When

> 0 and  < 0, a laminate is loaded by uniform axial tension and by transverse compression when

cooled uniformly.  A similar stress state exists when < 0 and  > 0 and the laminate is uniformly

heated. For both of these cases, L1 = −1, L3 = 0, and L2 is given by equation (50).  More importantly,
because the only destabilizing load is a transverse compression load, a wide-column buckling mode is

the only possibility. Thus, the critical temperature change  is obtained by dividing both sides

of equation (52b) by  For this special case, Ky = 1 and  Ky = 4  for simply supported and clamped
plates, respectively, and Kx = −Ky/L2.  

When  = 0 and   < 0, a laminate is loaded by uniform transverse tension when heated uni-

formly.  A similar stress state exists when = 0 and  > 0 and the laminate is uniformly cooled.  For

this loading condition, elastic buckling is also not possible.  For the cases where = 0 and  < 0 and

the laminate is cooled uniformly, and where = 0 and  > 0 and the laminate is heated uniformly, a

state of transverse compression exists.  A wide-column buckling mode is the only possibility.  The crit-

ical temperature change  is obtained by dividing both sides of equation (54b) by  For this

special case, Ky = 1 and  Ky = 4  for simply supported and clamped plates, respectively.  

Examples of traditional Kx-Ky buckling interaction curves that can be used to obtain
 described in the previous paragraphs are presented in figure 25 for specially

orthotropic plates that have negligible flexural anisotropy (γ = δ = 0).  In particular, two sets of generic
buckling curves are shown in figure 25 for plates that are subjected to combined axial compression and
transverse tension (Ky < 0) or compression (Ky > 0)  loads.  Results are shown in the figure for six val-
ues of the orthotropy parameter β that cover a very wide range of laminate constructions.  The solid and
dashed curves correspond to results for clamped and simply supported plates, respectively, and the
curves for  β = 1 correspond to results for isotropic plates.  Similar curves that show the effects of flex-
ural anisotropy are presented in reference 1, along with a discussion of the behavioral characteristics.
For the Kx-Ky buckling interaction curves shown in figure 25, the load factor L2 appears implicitly as the
slope of a line emanating from the origin of the graph.  The buckling coefficient that corresponds to a
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given value of L2 is determined by the point of intersection of the line and the appropriate buckling
interaction curve.  Several representative points of intersection are depicted in figure 25 for the simply
supported and clamped plates by the open and filled circular symbols, respectively.  Points of intersec-
tion that are on the horizontal portion of the curves, given by Ky = 1 and Ky = 4 for the simply supported
and clamped plates, respectively, correspond to wide-column buckling modes.  Similarly, results for
negative values of Kx, although not shown in figure 25, correspond to horizontal extrapolations of the
lines Ky = 1 and Ky = 4 and also correspond to wide-column buckling modes.  With the value of L2
determined from equation (47), unique values of Kx and Ky are determined from a figure like figure 25,
where  = Kx.

Results that are directly analogous to those presented in figure 25 are presented in figures 26 and 27

and in tables 35 and 36, in which the buckling coefficient Kx, or equivalently  is given explicitly in

terms of the load factor L2.  An interesting characteristic of figure 26 is that the family of curves for the

simply supported plates (dashed) and the clamped plates (solid) terminate at points on the gray, solid

curves given by  and  respectively.  The curves  and  correspond

to the horizontal portion of the curves in figure 25 that are given by Ky = 1 and Ky = 4 for the simply

supported plates (dashed) and the clamped plates (solid), respectively, and represent the wide-column
buckling modes.  Like figure 25, negative values of Kx (not shown) correspond to wide-column buck-

ling modes.  The results in figure 27 show an increase in the buckling coefficient Kx as the load factor L2

decreases. For negative values of L2, this increase in buckling resistance corresponds to an increase in

the magnitude of the transverse tension load, which has a well-known stabilizing effect.

Typically, when studying the behavior of a plate that possesses flexural anisotropy, one likes to
know the importance of the anisotropy.  Generic curves  for simply supported plates that can be used in
conjunction with figures 26 and 27 to obtain this information are presented in figures 28 and 29.  Some
corresponding numerical values are given in tables 37–39.  The curves in figures 28 and 29 indicate the
effects of plate flexural anisotropy on the ratio of the buckling coefficients that include and neglect this
anisotropy, respectively, as a function of β and L2.  Buckling coefficients that correspond to the neglect

of flexural anisotropy are denoted by  Six groups of curves are shown in each figure that cor-

respond to equal values of the flexural anisotropy parameters.  Moreover, three curves are contained in
each group that correspond to different values of L2. 

Charts for unbalanced laminates. Unbalanced laminates that are subjected to uniform heating or
cooling and that are fully restrained against thermal expansion or contraction can generally develop a
prebuckling stress state that consists of combinations of axial tension or compression, transverse tension
or compression, and positive or negative shear.  The specific form of the prebuckling stress state is

determined by the values of the parameters   and  which determine the values of the load

factors L1, L2, and L3.  The specific values of L1, L2, and L3 are obtained by following the same logic

presented previously for the balanced laminates and discussed during the presentation of equa-

tions (47)–(58).  Once L1, L2, and L3 are determined,  can be determined from

generic results that give either  or Kx-Ky-Ks buckling interaction surfaces (or level curves) as a

function of L1, L2, L3, β, γ, δ, and the flexural boundary conditions.  Then, the critical temperature
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change  is determined by using the appropriate one of equations (49), (52a), (54a), (56), (57),

and (58).

Examples of generic buckling curves are shown in figure 30 for plates with negligible flexural
anisotropy (γ = δ = 0) and that are subjected to combined axial compression, transverse tension or com-
pression, and shear. These results are applicable to unbalanced, symmetric laminates with negligible
flexural anisotropy that develop biaxial and shear loads when restrained from thermal expansion or
contraction and can be used to obtain  described in the previous paragraph.  The results shown in
figure 30 represent the traditional buckling interaction curves and are for a value of  β = 1, which corre-
sponds to results for isotropic plates.  The load factors L2 and L3 are included in the results in an implicit
manner.  The solid and dashed curves correspond to results for clamped and simply supported plates,
respectively, and are level curves of the corresponding Kx-Ky-Ks buckling interaction surface.  Each
curve in the figure corresponds to a different magnitude of the shear loading.  Moreover, positive and
negative values of the shear-buckling coefficient Ks correspond to positive and negative directions of
the shear loading (see fig. 2(b)).  The buckling coefficients that correspond to given values of the load
factors L2 and L3 are determined by the point of intersection of the line emanating from the origin of the
graph and the appropriate buckling interaction curve.  These points of intersection are depicted in
figure 30 for the simply supported and clamped plates by the open and filled circular symbols,
respectively.  Points of intersection that occur on the horizontal portion of the curves given by Ky = 1
and Ky = 4 for the simply supported and clamped plates, respectively, correspond to wide-column buck-
ling modes.  With the values of L1, L2, and L3 determined from the values of the parameters  
and  unique values of Kx, Ky, and Ks are determined from a figure like figure 30, and  is deter-
mined from equations (44)–(46).  It is worth mentioning that very few results of this type are available
in the technical literature. 

Results that are directly analogous to those presented in figure 30 are presented in figures 31–44
and in tables 40–53 for simply supported plates in which the buckling coefficient Kx, or equivalently

 is given explicitly in terms of the load factors L2 and L3, with L1 = 1. Thus, the results in these fig-
ures and tables are applicable to plates for which the axial load is a compression load.  More precisely,
Kx is given as a function of L2 for selected values of L3, and three different curves, for most figures, and
two different curves, in some figures, are shown in each figure that correspond to different values of β.  

The curves in figures 31 and 32 (see tables 40 and 41) are for specially orthotropic plates (γ = δ = 0)
with values of β = 0.5, 1, and 1.5 and with values of β = 2, 2.5, and 3, respectively.  Curves are given in
these figures that apply to both positive and negative shear loads.  Similarly, the curves in figures 33 and
34 and in figures 35 and 36 (see tables 42–45) are for plates with γ = δ = 0.2 (slight anisotropy) and for
values of β = 0.5, 1, and 1.5 and for values of β = 2, 2.5, and 3, respectively.   Likewise, the curves in
figures 37 and 38, and in figures 39 and 40 (see tables 46– 49) are for plates with γ = δ = 0.4  and for val-
ues of β = 0.6, 1, and 1.5 and for values of β = 2, 2.5, and 3, respectively.  The curves in figures 41 and
42 and in figures 43 and 44 (see tables 50–53) are for plates with γ = δ = 0.6  and for values of β = 1.5
and 2 and for values of β = 2.5 and 3, respectively.  Moreover, the results in figures 33, 35, 37, 39, 41,
and 43 are primarily for positive shear loads (L3 > 0), and those in figures 34, 36, 38, 40, 42, and 44 are
for negative shear loads (L3 < 0).  The distinction between positive and negative shear loads and the
differences in the corresponding results is caused by the presence of flexural anisotropy.  Although it is
not shown for all curves, the curves in figures 31–44 terminate at points on the gray, solid curves given

by  which represent the wide-column buckling modes.

   12b2

π2t2 Θ0
cr

  pcr

  α 1,   α 2,
  α 3,   pcr

  pcr,

  K x = 1
L2

,



27

Examples

To illustrate the use of the generic figures that have been presented herein, first consider a simply
supported [(±45/0/90)8]s laminate made of IM7/5260 graphite-bismaleimide material.  From figures 17

and 18, and tables 17–22, one gets  β = 1.1, γ = δ  ≈  0, = 1.51 × 10−6/°F, and  = 1.55 × 10−6/°F.

The parameter = 0  because the laminate is balanced.  For this laminate, the only destabilizing loads

are biaxial compression loads that are obtained for uniform heating.  For this case, L1 = 1, L3 = 0,  and

L2 = 1.03 ≈ 1  is obtained from equation (47).  For L1 = 1, Kx =  The value of Kx is obtained from

figure 26 (or table 35) by interpolating the results in the figure for  β = 1 and β = 1.5.  For  β = 1 and
L2 = 1, table 35 gives Kx = 1.0, which corresponds to a wide-column buckling mode.  Similarly, for
β = 1.5 and L2 = 1, table 35 also gives Kx = 1.0.  Therefore, Kx = 1.0 for β = 1.1. Substituting Kx = 1.0

for  and = 1.51 × 10−6/°F into equation (49) gives 0.66 × 106 °F.  Next, let the plate

width be given such that the plate width-to-thickness ratio is b/t = 100. For this plate,  ≈ 54 °F.   

Next, consider a simply supported [±45/0/90]s laminate made of IM7/5260 graphite-bismaleimide

material.  From figures 17 and 18, and tables 17–22, one gets β ≈ 2.0, γ = δ ≈ 0.2, = 1.85 × 10−6/°F,

and = 2.10 × 10−6/°F.  The parameter = 0  because the laminate is also balanced.  For this lami-

nate, the only destabilizing loads are also biaxial compression loads that are obtained for uniform heat-
ing.  Thus, for this case, L1 = 1, L3 = 0,  and L2 = 1.14  is obtained from equation (47).  Again, for

L1 = 1, Kx =  The value of Kx is obtained directly from figure 35 by noting that all values of Kx for

L2 > 1 also fall on the solid gray curve given by Kx = 1/L2.  For L2 = 1.14, Kx = 0.88, which also corre-

sponds to a wide-column buckling mode.  Substituting Kx = 0.88 for  and = 1.85 × 10−6/°F into

equation (49) gives 0.48 × 106 oF.  Next, let the plate width be given such that the plate

width-to-thickness ratio is b/t = 100.  For this plate,  ≈   39 °F.     

Finally, consider a simply supported [(+452/0/90)8]s unbalanced laminate made of IM7/5260
graphite-bismaleimide material.  Although results for these laminates are not presented in fig-
ures 17–24, by using a laminate analysis code or a set of charts like those shown in figures 17–24, one

could get β ≈ 1, γ = δ ≈ 0.3,  = 1.51 × 10−6/oF,  = 1.55 × 10−6/oF, and = 0.44 × 10−6/oF.  For

this laminate, a state of biaxial compression and positive shear loads arise for uniform heating.  Thus,
for this case, L1 = 1, L2 = 1.03 ≈ 1 is obtained from equation (47), and L3 = 0.3  is obtained from equa-

tion (48).  Again, for L1 = 1, Kx =  The results presented in figure 33 for β = 1, γ = δ = 0.2, L3 = 0,

and L3 = 0.5, and in figure 37 for β = 1, γ = δ = 0.4, L3 = 0, and L3 = 0.5 indicate that  Kx for L2 = 1 and
L3 = 0.3 are given by Kx = 1/L2 (solid gray curve).  For L2 = 1, Kx = 1.0, which also corresponds to a

wide-column buckling mode.  Substituting Kx = 1.0 for  and = 1.51 × 10−6/oF into equa-

tion (49) gives 0.66 × 106 oF.  Next, let the plate width be given such that the plate width-

to-thickness ratio is b/t = 100.  For this plate,  ≈ 54 °F.  Comparing this result with the result for the
corresponding [(±45/0/90)8]s laminate discussed previously shows that the unbalanced laminate is
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equally buckling resistant, even with its higher degree of flexural anisotropy and the presence of a shear
load.  This similarity in buckling resistance is a manifestation of the fact that both the [(±45/0/90)8]s and
the [(+452/0/90)8]s  laminates buckle into a wide-column mode.  For the case of uniform cooling, biaxial
tension and negative shear loads are induced by the restrained deformation.  The load factors for
this case are obtained from equations (50) and (51), where L1 = −1.  These equations yield L2 ≈ −1 and
L3 = −0.3.  Examination of the load factors indicates that the axial and transverse tension loads are
approximately 3.3 times the magnitude of the destabilizing shear load.  For this loading condition, the
tension loads are dominant and elastic buckling is not likely.

Concluding Remarks

An analytical approach for synthesizing buckling results and behavior for long, balanced and unbal-
anced symmetric laminates that are subjected to uniform heating or cooling and fully restrained thermal
expansion or contraction has been presented.  A nondimensional buckling analysis for long flexurally
anisotropic plates that are subjected to combined loads has been described and useful nondimensional
parameters have been presented.  In particular, stiffness-weighted thermal-expansion parameters have
been presented that can be used to determine critical temperature changes for a wide range of laminate
constructions in terms of physically intuitive, well-known mechanical buckling coefficients.  Moreover,
the effects of membrane orthotropy and membrane anisotropy on the mechanically and thermally
induced prebuckling stress state have been determined.  

A large number of results have been presented herein for some common laminates that are intended,
to some extent, to facilitate a structural designer’s transition to the use of the generic buckling design
curves that are included in the paper.  Many of the results were previously unknown.  In addition, sev-
eral results have been presented that show the effect of laminate construction on the buckling behavior,
and several cases are presented that indicate when a laminate will buckle because of uniform cooling.
Results of this type could be important in the design of vehicles that use liquid fuels.  Generic buckling
design curves have also been presented that provide physical insight into the buckling problem of the
present paper in addition to providing useful design data.  Also, examples have been presented that
demonstrate the use of the generic design curves. Overall, the analysis approach and generic results that
have been presented identify the effects or characteristics of laminate thermal expansion, membrane
orthotropy and anisotropy, and flexural orthotropy and anisotropy on laminated-plate buckling in a very
general and unifying manner.  Although the results are based on classical laminated-plate theory and
have been demonstrated for infinitely long plates, the approach is applicable to more sophisticated plate
theories that incorporate effects such as transverse-shear flexibility and can be used for finite-length
plates.
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Table 1. Typical Properties of Selected Engineering Metals

Property
Material

Aluminum Steel Titanium Brass Copper

Elastic modulus, E, Msi 10.0 30.0 16.0 14.8 17.0
Poisson’s ratio, ν 0.33 0.25 0.33 0.34 0.31
Coefficient of thermal 

expansion, α × 106/°F 13.0 6.5 4.8 10.5 9.5

Table 2. Lamina Properties

Lamina 
property*

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

EL, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5
ET, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73
νLT 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31
GLT, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76
αL × 106/°F 3.2 3.5 −2.22 0.0125 0.25 −0.167 3.38 −0.14 −0.64
αT × 106/°F 11.0 11.0 43.89 14.91 16.2 15.6 16.83 16.85 17.2

*The symbols L and T denote the longitudinal fiber and transverse matrix directions of a specially orthotropic
lamina, respectively.

Table 3. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported
and Clamped [(±45/0/90)m]s Plates Made of IM7/5260 Material and Totally Restrained Against
Thermal Expansion (see figs. 6, 7, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky
 

× 10−6 °F

Kx Ky
 

× 10−6 °F

1 1.85 1.14 .879 1.00 ∞† .476 3.52 4.00 ∞ 1.90
2 1.64 1.09 .917 1.00 ∞ .559 3.67 4.00 ∞ 2.24
3 1.58 1.06 .940 1.00 ∞ .595 3.74 3.97 2.32 2.36
4 1.55 1.05 .954 1.00 ∞ .614 3.75 3.94 1.86 2.42
5 1.54 1.04 .962 1.00 ∞ .626 3.76 3.91 1.69 2.45
6 1.53 1.03 .968 1.00 ∞ .634 3.76 3.89 1.60 2.47
7 1.52 1.03 .972 1.00 ∞ .640 3.76 3.87 1.55 2.48
8 1.51 1.03 .975 1.00 ∞ .645 3.76 3.86 1.51 2.49

*L1 = 1, L3 = 0, and   (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.
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Table 4. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(+452/0/90)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 6, 7,
8, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6 °F

Kx Ky Ks

× 10−6 °F

1 1.85 1.14 .306 .863 .982 .264 2.80 .467 2.10 2.38 .641 .85 1.13
2 1.64 1.09 .300 .917 1.00 .275 ∞† .559 2.59 2.83 .777 .91 1.58
3 1.58 1.06 .296 .940 1.00 .278 ∞ .595 2.73 2.90 .807 .91 1.73
4 1.55 1.05 .294 .954 1.00 .280 ∞ .614 2.79 2.93 .820 .91 1.80
5 1.54 1.04 .293 .962 1.00 .281 ∞ .626 2.82 2.94 .826 .90 1.84
6 1.53 1.03 .292 .968 1.00 .282 ∞ .634 2.85 2.94 .831 .90 1.87
7 1.52 1.03 .291 .972 1.00 .283 ∞ .640 2.86 2.95 .833 .90 1.89
8 1.51 1.03 .291 .975 1.00 .283 ∞ .645 2.88 2.95 .836 .90 1.90

*L1 = 1,  and  (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

Table 5. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported
and Clamped [(±45/02)m]s Plates Made of IM7/5260 Material and Totally Restrained Against
Thermal Expansion (see figs. 6, 7, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky
 

× 10−6 °F

Kx Ky
 

× 10−6 °F

1 1.33 2.15 .466 1.00 ∞† .352 1.86 4.00 ∞ 1.41
2 1.26 2.70 .371 1.00 ∞ .294 1.48 4.00 ∞ 1.18
3 1.25 2.90 .344 1.00 ∞ .275 1.38 4.00 ∞ 1.10
4 1.25 3.01 .332 1.00 ∞ .265 1.33 4.00 ∞ 1.06
5 1.25 3.08 .325 1.00 ∞ .259 1.30 4.00 ∞ 1.04
6 1.25 3.12 .320 1.00 ∞ .255 1.28 4.00 ∞ 1.02
7 1.25 3.15 .317 1.00 ∞ .253 1.27 4.00 ∞ 1.01
8 1.26 3.18 .315 1.00 ∞ .251 1.26 4.00 ∞ 1.00

*L1 = 1, L3 = 0, and   (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.
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Table 6. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(+452/02)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 6, 7,
8, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6  oF

Kx Ky Ks

× 10−6 °F

1 1.33 2.15 .439 .466 1.00 .205 ∞† .352 1.30 2.79 0.571 .97 .982
2 1.26 2.70 .492 .371 1.00 .182 ∞ .294 1.18 3.18 .580 1.25 .935
3 1.25 2.90 .510 .344 1.00 .176 ∞ .275 1.14 3.30 .580 1.36 .907
4 1.25 3.01 .520 .332 1.00 .173 ∞ .265 1.12 3.36 .580 1.42 .890
5 1.25 3.08 .525 .325 1.00 .171 ∞ .259 1.10 3.39 .580 1.45 .880
6 1.25 3.12 .529 .320 1.00 .170 ∞ .255 1.10 3.42 .580 1.48 .873
7 1.25 3.15 .532 .317 1.00 .169 ∞ .253 1.09 3.43 .579 1.50 .868
8 1.26 3.18 .534 .315 1.00 .168 ∞ .251 1.08 3.45 .579 1.51 .864

*L1 = 1,  and  (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

Table 7. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply
Supported and Clamped [(±45/902)m]s Plates Made of IM7/5260 Material and Totally Restrained
Against Thermal Expansion (see figs. 6, 7, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky

× 10−6 °F

Kx Ky

× 10−6 °F

1 2.39 .466 2.15 1.00 ∞† .897 6.78 3.158 .86 2.83
2 2.28 .371 2.70 1.00 ∞ 1.19 6.66 2.466 .67 2.93
3 2.26 .344 2.90 .999 4.44 1.28 6.56 2.259 .63 2.90
4 2.26 .332 2.97 .985 2.23 1.31 6.50 2.160 .61 2.87
5 2.26 .325 2.99 .972 1.88 1.32 6.47 2.102 .60 2.86
6 2.26 .320 3.00 .962 1.72 1.33 6.44 2.064 .60 2.85
7 2.27 .317 3.01 .954 1.64 1.33 6.43 2.037 .59 2.84
8 2.27 .315 3.01 .948 1.58 1.33 6.41 2.017 .59 2.83

*L1 = 1, L3 = 0, and   (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.
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Table 8. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(+452/902)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 6, 7,
8, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6 °F

Kx Ky Ks

× 10−6 °F

1 2.39 .466 .205 1.87 .871 .382 1.34 .781 3.57 1.66 .730 .59 1.49
2 2.28 .371 .182 2.30 .854 .420 1.14 1.01 4.31 1.60 .787 .52 1.89
3 2.26 .344 .176 2.40 .825 .421 1.06 1.06 4.48 1.54 788 .50 1.98
4 2.26 .332 .173 2.43 .809 .420 1.02 1.08 4.56 1.51 .787 .50 2.01
5 2.26 .325 .171 2.45 .798 .419 1.00 1.09 4.60 1.50 .785 .49 2.03
6 2.26 .320 .170 2.47 .791 .419 .99 1.09 4.62 1.48 .784 .49 2.04
7 2.27 .317 .169 2.48 .785 .418 .98 1.09 4.64 1.47 .783 .49 2.05
8 2.27 .315 .168 2.48 .781 .417 .97 1.10 4.66 1.47 .783 .49 2.06

*L1 = 1,  and  (see discussion of eqs. (47)–(49)).

Table 9. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(±45/102)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 6, 7, 8,
12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6  °F

Kx Ky Ks

× 10−6  °F

1 1.37 2.05 .146 .488 1.00 .071 ∞† .357 1.95 4.00 .285 ∞ 1.43
2 1.31 2.55 .163 .392 1.00 .064 ∞ .299 1.57 4.00 .255 ∞ 1.20
3 1.30 2.74 .169 .365 1.00 .062 ∞ .280 1.46 4.00 .246 ∞ 1.12
4 1.30 2.84 .172 .352 1.00 .061 ∞ .270 1.41 4.00 .242 ∞ 1.08
5 1.31 2.90 .174 .345 1.00 .060 ∞ .264 1.38 4.00 .239 ∞ 1.06
6 1.31 2.94 .175 .340 1.00 .059 ∞ .260 1.36 4.00 .238 ∞ 1.04
7 1.31 2.97 .176 .337 1.00 .059 ∞ .258 1.35 4.00 .237 ∞ 1.03
8 1.31 2.99 .176 .334 1.00 .059 ∞ .255 1.34 4.00 .236 ∞ 1.02

*L1 = 1,  and  (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1    L2 =
α 2
α 1

   L3 =
α 3
α 1    λ cr

b
   12b2

π2t 2 Θ0
cr

   λ cr
b

   12b2

π2t 2 Θ0
cr

  N y1 = 0.55N x1
c ,   N xy1 = 0.22N x1

c

  α 1    L2 =
α 2
α 1

   L3 =
α 3
α 1    λ cr

b
   12b2

π2t 2 Θ0
cr

   λ cr
b

   12b2

π2t 2 Θ0
cr

  N y1 = 1.74N x1
c ,   N xy1 = 0.13N x1

c
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Table 10. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(±45/302)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 6, 7,
8, 12, and 13)

m* × 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6 oF

Kx Ky Ks

× 10−6 oF

1 1.68 1.46 .304 .684 1.00 .208 ∞† 0.408 2.73 4.00 .831 ∞ 1.63
2 1.66 1.67 .325 .599 1.00 .194 ∞ 0.361 2.39 4.00 .777 ∞ 1.44
3 1.66 1.75 .332 .573 1.00 .190 ∞ 0.345 2.29 4.00 .760 ∞ 1.38
4 1.66 1.78 .336 .560 1.00 .188 ∞ 0.338 2.24 4.00 .752 ∞ 1.35
5 1.66 1.81 .338 .553 1.00 .187 ∞ 0.333 2.21 4.00 .747 ∞ 1.33
6 1.66 1.82 .339 .548 1.00 .186 ∞ 0.330 2.19 4.00 .744 ∞ 1.32
7 1.66 1.84 .340 .545 1.00 .185 ∞ 0.328 2.18 4.00 .741 ∞ 1.31
8 1.66 1.85 .341 .542 1.00 .185 ∞ 0.326 2.17 4.00 .740 ∞ 1.30

*L1 = 1,  and  (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

Table 11. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and
Clamped [±θ]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see
figs. 9, 10, and 14)

θ, 
deg*

× 106/°F

Simply supported Clamped

Kx Ky

× 10−6 °F

Kx Ky

× 10−6 °F

0 1.04 14.4 3.69 .069 1.00 ∞† .067 .278 4.00 ∞ .268
5 1.06 13.9 3.60 .072 1.00 ∞ .068 .288 4.00 ∞ .272
10 1.13 12.4 3.34 .080 1.00 ∞ .071 .322 4.00 ∞ .285
15 1.23 10.3 2.98 .097 1.00 ∞ .079 .388 4.00 ∞ .315
20 1.35 7.90 2.57 .127 1.00 ∞ .094 .506 4.00 ∞ .376
25 1.46 5.64 2.17 .177 1.00 ∞ .122 .709 4.00 ∞ .487
30 1.56 3.81 1.81 .262 1.00 ∞ .168 1.05 4.00 ∞ .672
35 1.68 2.48 1.49 .403 1.00 ∞ .240 1.61 4.00 ∞ .962
40 1.82 1.58 1.22 .632 1.00 ∞ .348 2.50 3.96 2.82 1.38
45 1.99 1.00 1.00 1.00 1.00 ∞ .502 3.64 3.64 1.33 1.83
50 2.22 .632 .819 1.58 1.00 ∞ .714 4.78 3.02 .85 2.16
55 2.50 .403 .672 2.47 .994 2.92 .988 5.63 2.27 .63 2.26
60 2.82 .262 .554 3.10 .813 1.07 1.10 6.11 1.60 .51 2.17
65 3.16 .177 .461 3.32 .588 .78 1.05 6.26 1.11 .44 1.98
70 3.46 .127 .389 3.26 .413 .66 .943 6.15 .778 .40 1.78
75 3.67 .097 .336 3.05 .296 .59 .831 5.87 .570 .37 1.60
80 3.78 .080 .299 2.80 .225 .55 .741 5.56 .447 .35 1.47
85 3.82 .072 .278 2.62 .189 .54 .685 5.33 .384 .35 1.39
90 3.83 .069 .271 2.55 .177 .53 .666 5.24 .364 .34 1.37

*L1 = 1 and L3 = 0 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1    L2 =
α 2
α 1

   L3 =
α 3
α 1    λ cr

b
   12b2

π2t 2 Θ0
cr

   λ cr
b

   12b2

π2t 2 Θ0
cr

  N y1 = 1.34N x1
c ,   N xy1 = 0.29N x1

c

  α 1
   L2 =

α 2
α 1

  N y1
N x1

c    λ cr
b

   12b2

π2t 2 Θ0
cr    λ cr

b

   12b2

π2t 2 Θ0
cr



35

Table 12. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and
Clamped [(±θ)m]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion
(m > 5, see figs. 9, 10, and 14)

θ, 
deg*

 × 106/°F

Simply supported Clamped

Kx Ky

× 10−6 °F

Kx Ky

× 10−6 °F

0 1.04 14.4 3.69 .069 1.00 ∞† .067 .278 4.00 ∞ .268
5 1.06 13.9 3.60 .072 1.00 ∞ .068 .288 4.00 ∞ .272
10 1.13 12.4 3.34 .080 1.00 ∞ .071 .322 4.00 ∞ .285
15 1.23 10.3 2.98 .097 1.00 ∞ .079 .388 4.00 ∞ .315
20 1.35 7.90 2.57 .127 1.00 ∞ .094 .506 4.00 ∞ .376
25 1.46 5.64 2.17 .177 1.00 ∞ .122 .709 4.00 ∞ .487
30 1.56 3.81 1.81 .262 1.00 ∞ .168 1.05 4.00 ∞ .672
35 1.68 2.48 1.49 .403 1.00 ∞ .240 1.61 4.00 ∞ .962
40 1.82 1.58 1.22 .632 1.00 ∞ .348 2.53 4.00 ∞ 1.39
45 1.99 1.00 1.00 1.00 1.00 ∞ .502 4.00 4.00 ∞ 2.01
50 2.22 .632 .819 1.58 1.00 ∞ .714 6.32 3.99 2.70 2.85
55 2.50 .403 .672 2.48 1.00 ∞ .994 7.75 3.12 .72 3.11
60 2.82 .262 .554 3.81 1.00 ∞ 1.352 8.15 2.14 .54 2.89
65 3.16 .177 .461 4.43 .785 .910 1.404 7.96 1.41 .45 2.52
70 3.46 .127 .389 4.16 .527 .690 1.204 7.39 .936 .40 2.14
75 3.67 .097 .336 3.62 .352 .600 .988 6.64 .644 .37 1.81
80 3.78 .080 .299 3.07 .247 .560 .814 5.92 .476 .35 1.57
85 3.82 .072 .278 2.69 .194 .540 .703 5.42 .390 .35 1.42
90 3.83 .069 .271 2.55 .177 .530 .666 5.24 .364 .34 1.37

*L1 = 1 and L3 = 0 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1
   L2 =

α 2
α 1

  N y1
N x1

c    λ cr
b

   12b2

π2t 2 Θ0
cr    λ cr

b

   12b2

π2t 2 Θ0
cr



36

Table 13. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped [(+θ)2m]s
(m = 1, 2, ...) Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 9, 10, 11, and 14)

θ, 
deg*

× 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6 °F

Kx Ky Ks

× 10−6 °F

0 1.04 14.4 0 3.70 0 .069 1.00 0 ∞† .067 .278 4.00 0 ∞ .268
5 1.06 13.9 .450 3.60 .229 .072 1.00 .032 ∞ .068 .288 4.00 .130 ∞ .272
10 1.13 12.4 .822 3.34 .426 .080 1.00 .066 ∞ .071 .322 4.00 .265 ∞ .285
15 1.23 10.3 1.06 2.98 .571 .097 1.00 .103 ∞ .079 .388 4.00 .412 ∞ .315
20 1.35 7.90 1.16 2.57 .658 .127 1.00 .146 ∞ .094 .506 4.00 .585 ∞ .376
25 1.46 5.64 1.12 2.17 .697 .177 1.00 .199 ∞ .122 .706 3.98 .793 3.99 .485
30 1.56 3.81 1.01 1.81 .697 .262 1.00 .266 ∞ .168 .916 3.49 .928 1.54 .586
35 1.68 2.48 .866 1.49 .671 .403 1.00 .349 ∞ .240 1.14 2.83 .986 1.08 .679
40 1.82 1.58 .715 1.22 .628 .622 .984 .444 3.01 .343 1.40 2.21 1.00 .84 .771
45 1.99 1.00 .574 1.00 .574 .836 .836 .480 1.45 .420 1.72 1.72 .986 .69 .863
50 2.22 .632 .452 .819 .514 1.06 .672 .480 1.07 .480 2.11 1.34 .954 .59 .953
55 2.50 .403 .349 .672 .451 1.32 .532 .461 .87 .529 2.59 1.05 .906 .51 1.04
60 2.82 .262 .266 .554 .386 1.61 .421 .427 .75 .570 3.16 .828 .839 .46 1.12
65 3.16 .177 .199 .461 .321 1.90 .337 .379 .67 .602 3.76 .666 .749 .42 1.19
70 3.46 .127 .146 .389 .256 2.17 .274 .317 .61 .627 4.33 .548 .633 .39 1.25
75 3.67 .097 .103 .336 .192 2.37 .230 .244 .58 .645 4.78 .464 .492 .37 1.30
80 3.78 .080 .066 .299 .128 2.48 .200 .164 .55 .657 5.06 .407 .335 .35 1.34
85 3.82 .072 .032 .278 .064 2.54 .183 .082 .54 .664 5.20 .375 .169 .35 1.36
90 3.83 .069 0 .271 0 2.55 .177 0 .53 .666 5.24 .364 0 .34 1.37

*L1 = 1 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1    L2 =
α 2
α 1

   L3 =
α 3
α 1

  N y1
N x1

c
  N xy1

N x1
c    λ cr

b
   12b2

π2t 2 Θ0
cr

   λ cr
b

   12b2

π2t 2 Θ0
cr
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Table 14. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[(±45/0/90) + θ]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see
figs. 9, 10, and 15)

θ, 
deg*

× 106/°F

Simply supported Clamped

Kx Ky

× 10−6 °F

Kx Ky

× 10−6 °F

0 1.85 1.14 .879 1.00 ∞† .476 3.52 4.00 ∞ 1.91
5 1.81 1.06 .943 1.00 ∞ .522 3.77 4.00 ∞ 2.09
10 1.73 .990 1.01 1.00 ∞ .583 3.91 3.86 1.73 2.25
15 1.64 .930 1.08 1.00 ∞ .656 3.88 3.61 1.27 2.37
20 1.54 .882 1.13 1.00 ∞ .736 3.79 3.34 1.06 2.46
25 1.45 .846 1.18 .999 6.54 .816 3.67 3.10 .94 2.54
30 1.37 .818 1.20 .980 2.49 .873 3.57 2.92 .86 2.60
35 1.32 .797 1.20 .955 1.96 .909 3.50 2.79 .81 2.66
40 1.29 .780 1.20 .938 1.77 .935 3.48 2.72 .78 2.71
45 1.28 .767 1.22 .935 1.73 .954 3.52 2.70 .76 2.75
50 1.30 .755 1.25 .947 1.81 .966 3.61 2.73 .76 2.78
55 1.34 .746 1.30 .969 2.09 .969 3.76 2.81 .78 2.81
60 1.41 .740 1.34 .993 3.07 .954 3.97 2.94 .81 2.82
65 1.49 .738 1.35 1.00 ∞ .907 4.22 3.11 .86 2.82
70 1.60 .743 1.35 1.00 ∞ .844 4.48 3.33 .95 2.81
75 1.70 .757 1.32 1.00 ∞ .778 4.70 3.56 1.08 2.77
80 1.79 .784 1.28 1.00 ∞ .715 4.83 3.79 1.31 2.71
85 1.84 .825 1.21 1.00 ∞ .660 4.80 3.96 1.95 2.61
90 1.85 .879 1.14 1.00 ∞ .616 4.55 4.00 ∞ 2.47

*L1 = 1,  and L3 = 0 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1
   L2 =

α 2
α 1    λ cr

b

   12b2

π2t 2 Θ0
cr    λ cr

b

   12b2

π2t 2 Θ0
cr

  N y1 = N x1
c ,
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Table 15. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and
Clamped [±θ/0/90]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see
figs. 9, 10, and 15)

θ, 
deg*

 × 106/oF

Simply supported Clamped

Kx Ky

× 10−6 °F

Kx Ky

× 10−6 °F

0 1.58 6.31 1.81 .158 1.00 ∞† .100 .633 4.00 ∞ .401
5 1.60 6.20 1.79 .161 1.00 ∞ .101 .645 4.00 ∞ .404
10 1.64 5.86 1.74 .171 1.00 ∞ .104 .683 4.00 ∞ .417
15 1.69 5.28 1.66 .189 1.00 ∞ .112 .757 4.00 ∞ .448
20 1.74 4.52 1.56 .221 1.00 ∞ .127 .884 4.00 ∞ .509
25 1.77 3.67 1.45 .273 1.00 ∞ .154 1.09 4.00 ∞ .616
30 1.79 2.84 1.34 .352 1.00 ∞ .197 1.41 4.00 ∞ .789
35 1.80 2.12 1.22 .471 1.00 ∞ .262 1.88 4.00 ∞ 1.05
40 1.81 1.56 1.11 .642 1.00 ∞ .354 2.57 4.00 ∞ 1.42
45 1.85 1.14 1.00 .879 1.00 ∞ .476 3.52 4.00 ∞ 1.90
50 1.90 .837 .905 1.20 1.00 ∞ .630 4.75 3.97 2.21 2.50
55 1.96 .627 .821 1.60 1.00 ∞ .816 5.59 3.50 .96 2.86
60 2.02 .483 .749 2.07 1.00 ∞ 1.03 5.88 2.84 .72 2.92
65 2.06 .387 .689 2.53 .976 1.92 1.23 5.81 2.24 .61 2.82
70 2.09 .323 .640 2.54 .820 1.09 1.22 5.51 1.78 .54 2.64
75 2.09 .282 .602 2.36 .666 .90 1.13 5.14 1.45 .51 2.46
80 2.08 .257 .575 2.15 .554 .82 1.03 4.81 1.24 .49 2.31
85 2.07 .244 .559 2.00 .488 .78 .965 4.58 1.12 .47 2.21
90 2.07 .240 .554 1.95 .467 .77 .941 4.50 1.08 .47 2.18

*L1 = 1 and L3 = 0 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

  α 1
   L2 =

α 2
α 1

  N y1

N x1
c    λ cr

b

   12b2

π2t 2 Θ0
cr    λ cr

b

   12b2

π2t 2 Θ0
cr
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Table 16. Parameters, Buckling Coefficients, and Critical Temperature Change for Simply Supported and Clamped
[+θ2/0/90]s Plates Made of IM7/5260 Material and Totally Restrained Against Thermal Expansion (see figs. 9, 10, 11,
and 15)

θ, 
deg*

× 106/°F

Simply supported Clamped

Kx Ky Ks

× 10−6 °F

Kx Ky Ks

× 10−6 °F

0 1.58 6.31 0 1.81 0 .158 1.00 0 ∞† .100 .633 4.00 0 ∞ .401
5 1.60 6.20 .129 1.79 .069 .161 1.00 .021 ∞ .101 .645 4.00 .083 ∞ .404
10 1.64 5.86 .247 1.74 .134 .171 1.00 .042 ∞ .104 .683 4.00 .169 ∞ .417
15 1.69 5.28 .341 1.66 .191 .189 1.00 .064 ∞ .112 .757 4.00 .258 ∞ .448
20 1.74 4.52 .402 1.56 .236 .221 1.00 .089 ∞ .127 .884 4.00 .356 ∞ .509
25 1.77 3.67 .428 1.45 .270 .273 1.00 .117 ∞ .154 1.09 4.00 .467 ∞ .616
30 1.79 2.84 .423 1.34 .290 .352 1.00 .149 ∞ .197 1.35 3.82 .570 2.02 .755
35 1.80 2.12 .395 1.22 .299 .471 1.00 .186 ∞ .262 1.57 3.34 .621 1.32 .877
40 1.81 1.56 .353 1.11 .297 .642 1.00 .227 ∞ .354 1.82 2.83 .641 1.03 1.00
45 1.85 1.14 .306 1.00 .287 .863 .982 .264 2.80 .467 2.10 2.38 .641 .85 1.13
50 1.90 .837 .259 .905 .269 1.06 .886 .274 1.60 .558 2.42 2.03 .627 .74 1.28
55 1.96 .627 .215 .821 .246 1.25 .780 .267 1.25 .637 2.79 1.75 .599 .65 1.43
60 2.02 .483 .175 .749 .217 1.43 .689 .249 1.06 .708 3.19 1.54 .556 .60 1.58
65 2.06 .387 .139 .689 .186 1.59 .615 .221 .950 .772 3.57 1.38 .497 .55 1.73
70 2.09 .323 .107 .640 .151 1.73 .559 .186 .880 .829 3.91 1.26 .420 .52 1.88
75 2.09 .282 .079 .602 .115 1.83 .517 .144 .830 .876 4.18 1.18 .329 .50 2.00
80 2.08 .257 .052 .575 .077 1.90 .489 .098 .790 .911 4.36 1.12 .226 .48 2.09
85 2.07 .244 .026 .559 .039 1.94 .472 .050 .780 .933 4.47 1.09 .115 .47 2.16
90 2.07 .240 0 .554 0 1.95 .467 0 .770 .941 4.50 1.08 0 .47 2.18

*L1 = 1 (see discussion of eqs. (47)–(49)).
†The symbol ∞ denotes a wide-column buckling mode.

Table 17. Values of Stiffness-Weighted Laminate Thermal-Expansion Parameter × 106/°F for [(±45/0/90)m]s
Laminates (see fig. 17)

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/5260
AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 8.73 7.40 2.97 1.85 2.98 1.64 7.90 1.67 −.567
2 8.43 6.90 2.63 1.64 2.67 1.47 6.96 1.48 −.490
3 8.34 6.75 2.53 1.58 2.58 1.42 6.70 1.42 −.469
4 8.29 6.68 2.48 1.55 2.54 1.40 6.57 1.39 −.459
5 8.26 6.64 2.46 1.54 2.52 1.38 6.50 1.38 −.453
6 8.25 6.61 2.44 1.53 2.50 1.38 6.45 1.37 −.449
7 8.23 6.59 2.43 1.52 2.49 1.37 6.42 1.36 −.447
8 8.22 6.57 2.42 1.51 2.48 1.37 6.39 1.36 −.445

  α 1    L2 =
α 2
α 1

   L3 =
α 3
α 1

  N y1
N x1

c
  N xy1

N x1
c    λ cr

b
   12b2

π2t 2 Θ0
cr

   λ cr
b

   12b2

π2t 2 Θ0
cr

  α 1
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Table 18. Values of Stiffness-Weighted Laminate Thermal-Expansion Parameter × 106/°F for [(±45/0/90)m]s
Laminates (see figs. 17 and 18)

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 8.95 8.01 3.38 2.10 3.36 1.86 8.96 1.92 −0.662
2 8.58 7.30 2.86 1.79 2.90 1.60 7.57 1.61 −0.542
3 8.45 7.03 2.69 1.68 2.74 1.51 7.10 1.51 −0.504
4 8.37 6.89 2.60 1.63 2.66 1.47 6.88 1.46 −0.485
5 8.33 6.81 2.55 1.60 2.61 1.44 6.74 1.43 −0.474
6 8.30 6.75 2.52 1.58 2.58 1.42 6.66 1.41 −0.467
7 8.28 6.71 2.49 1.56 2.56 1.41 6.60 1.40 −0.462
8 8.26 6.68 2.48 1.55 2.54 1.40 6.54 1.39 −0.458

Table 19. Values of Load Factor  for [(±45/0/90)m]s Laminates (see fig. 18)

m*

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.02 1.08 1.14 1.14 1.13 1.13 1.13 1.14 1.17
2 1.02 1.06 1.09 1.09 1.08 1.09 1.09 1.09 1.11
3 1.01 1.04 1.06 1.06 1.06 1.06 1.06 1.07 1.07
4 1.01 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.06
5 1.01 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.05
6 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.04
7 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03
8 1.00 1.02 1.02 1.03 1.02 1.02 1.02 1.03 1.03

*L1 = 1, L3 = 0, and  (see discussion of eqs. (47)–(52)).

Table 20. Values of   for [(±45/0/90)m]s Laminates (see ref. 5, fig. 20)

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.28 1.57 2.02 1.98 1.90 1.89 2.05 2.04 2.21
2 1.14 1.26 1.45 1.44 1.40 1.40 1.46 1.46 1.53
3 1.09 1.17 1.29 1.28 1.26 1.26 1.30 1.29 1.33
4 1.07 1.13 1.21 1.21 1.19 1.19 1.22 1.22 1.24
5 1.05 1.10 1.17 1.16 1.15 1.15 1.17 1.17 1.19
6 1.04 1.08 1.14 1.13 1.13 1.12 1.14 1.14 1.16
7 1.04 1.07 1.12 1.11 1.11 1.11 1.12 1.12 1.14
8 1.03 1.06 1.10 1.10 1.09 1.09 1.11 1.11 1.12

  α 2

   L2 =
α 2
α 1

  N y1 = N x1
c

   β =
D12 + 2D66

D11D22
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Table 21. Values of  for [(±45/0/90)m]s Laminates (see ref. 5, fig. 21)

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 .036 .114 .182 .182 .170 .176 .178 .189 .217
2 .015 .045 .069 .069 .065 .067 .067 .071 .080
3 .009 .027 .042 .042 .039 .041 .040 .043 .048
4 .006 .020 .030 .030 .028 .029 .029 .031 .035
5 .005 .015 .023 .023 .022 .023 .022 .024 .027
6 .004 .013 .019 .019 .018 .019 .018 .020 .022
7 .003 .011 .016 .016 .015 .016 .016 .017 .019
8 .003 .009 .014 .014 .013 .014 .013 .014 .016

Table 22. Values of   for [(±45/0/90)m]s Laminates (see ref. 5, fig. 22)

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron- 
epoxy

IM7/
PETI-5

P-100/
3502

1 .037 .123 .207 .207 .191 .200 .202 .216 .253
2 .015 .047 .075 .075 .070 .073 .073 .078 .089
3 .009 .028 .044 .044 .042 .044 .043 .046 .052
4 .007 .020 .031 .031 .029 .031 .030 .032 .037
5 .005 .016 .024 .024 .023 .024 .023 .025 .028
6 .004 .013 .020 .020 .018 .019 .019 .020 .023
7 .004 .011 .016 .017 .016 .016 .016 .017 .019
8 .003 .009 .014 .014 .013 .014 .014 .015 .017

Table 23. Values of  for [(±45/0/90)m]s Laminates

m

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.01 1.04 1.07 1.07 1.06 1.06 1.07 1.07 1.08
2 1.01 1.03 1.04 1.04 1.04 1.04 1.04 1.05 1.05
3 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.04
4 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03
5 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
6 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02
7 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02
8 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

   γ =
D16

D11
3 D22

1/4

   δ =
D26

D11D22
3 1/4

  D11
D22

1/4



42

Table 24. Values of Stiffness-Weighted Laminate Thermal-Expansion Parameter  × 106/°F for [(±θ)m]s and
[(+θ)2m]s Laminates With m = 1, 2, ... (see fig. 19)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 6.03 8.66 −4.22 1.04 2.29 .538 12.4 .580 −4.86
5 6.08 8.67 −4.12 1.06 2.31 .563 12.4 .609 −4.78
10 6.23 8.70 −3.81 1.13 2.39 .638 12.5 .692 −4.47
15 6.48 8.73 −3.24 1.23 2.50 .752 12.6 .817 −3.84
20 6.82 8.72 −2.41 1.35 2.62 .891 12.3 .967 −3.03
25 7.22 8.65 −1.38 1.46 2.72 1.04 11.8 1.12 −2.28
30 7.67 8.50 −.245 1.56 2.81 1.19 11.0 1.27 −1.69
35 8.12 8.28 .901 1.68 2.90 1.36 10.1 1.42 −1.24
40 8.56 8.02 2.04 1.82 3.03 1.54 9.27 1.60 −.900
45 8.93 7.74 3.22 1.99 3.20 1.75 8.58 1.81 −.622
50 9.23 7.46 4.46 2.22 3.43 2.01 8.06 2.08 −.373
55 9.42 7.17 5.82 2.50 3.71 2.31 7.66 2.40 −.126
60 9.53 6.88 7.27 2.82 4.03 2.66 7.32 2.78 .148
65 9.55 6.59 8.71 3.16 4.35 3.03 6.96 3.19 .479
70 9.53 6.30 9.95 3.46 4.60 3.38 6.54 3.56 .886
75 9.47 6.04 10.8 3.67 4.76 3.66 6.08 3.82 1.33
80 9.42 5.83 11.3 3.78 4.83 3.84 5.67 3.95 1.71
85 9.38 5.70 11.6 3.82 4.84 3.94 5.40 4.00 1.92
90 9.36 5.65 11.6 3.83 4.85 3.96 5.30 4.01 1.99

Table 25. Values of Stiffness-Weighted Laminate Thermal-Expansion Parameter  × 106/°F for [(±θ)m]s and
[(+θ)2m]s Laminates With m = 1, 2, ... (see fig. 20)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 11.7 11.9 43.1 14.9 16.3 15.5 17.6 16.8 17.0
5 11.7 11.9 42.6 14.7 16.1 15.2 17.8 16.6 16.2
10 11.7 11.9 40.5 14.0 15.5 14.2 18.3 15.8 13.3
15 11.6 11.9 36.4 12.7 14.4 12.5 18.7 14.2 8.73
20 11.5 11.6 30.0 10.6 12.6 10.1 18.5 11.7 4.46
25 11.2 11.2 22.4 8.21 10.3 7.66 17.2 8.76 1.76
30 10.8 10.5 15.3 5.95 7.96 5.47 15.0 6.12 .391
35 10.3 9.64 9.70 4.16 5.93 3.78 12.6 4.11 −.240
40 9.66 8.68 5.78 2.87 4.35 2.58 10.4 2.73 −.514
45 8.93 7.74 3.22 1.99 3.20 1.75 8.58 1.81 −.622
50 8.17 6.89 1.58 1.40 2.38 1.20 7.19 1.22 −.654
55 7.43 6.16 .540 1.01 1.82 .830 6.14 .833 −.653
60 6.75 5.56 −.116 .740 1.42 .580 5.36 .578 −.638
65 6.16 5.09 −.534 .559 1.15 .411 4.79 .408 −.620
70 5.67 4.72 −.799 .437 .956 .297 4.37 .294 −.602
75 5.29 4.45 −.965 .356 .826 .221 4.08 .220 −.587
80 5.02 4.27 −1.07 .304 .743 .172 3.88 .173 −.576
85 4.86 4.16 −1.12 .275 .696 .146 3.77 .147 −.570
90 4.81 4.12 −1.14 .266 .681 .137 3.73 .139 −.567

  α 1

  α 2
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Table 26. Values of Stiffness-Weighted Laminate Thermal-Expansion Parameter  × 106/°F for [(+θ)2m]s
Laminates With m = 1, 2, ... (see fig. 21)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 .325 −.379 2.65 .478 .407 .585 −1.13 .609 1.71
10 .646 −.746 5.21 .929 .795 1.12 −2.24 1.19 3.13
15 .956 −1.09 7.45 1.31 1.13 1.55 −3.28 1.67 3.82
20 1.25 −1.38 9.01 1.55 1.38 1.81 −4.09 1.97 3.69
25 1.51 −1.60 9.65 1.64 1.49 1.89 −4.52 2.04 3.15
30 1.72 −1.73 9.44 1.58 1.49 1.82 −4.56 1.94 2.58
35 1.87 −1.77 8.72 1.45 1.41 1.68 −4.29 1.76 2.11
40 1.94 −1.73 7.80 1.30 1.28 1.51 −3.88 1.55 1.75
45 1.93 −1.63 6.88 1.14 1.15 1.33 −3.44 1.36 1.48
50 1.85 −1.48 6.02 1.00 1.01 1.17 −3.01 1.18 1.27
55 1.71 −1.32 5.23 .872 .882 1.03 −2.61 1.03 1.11
60 1.51 −1.13 4.48 .749 .756 .886 −2.22 .885 .978
65 1.28 −.940 3.74 .629 .630 .746 −1.84 .744 .857
70 1.04 −.746 2.99 .505 .503 .603 −1.45 .599 .733
75 .780 −.554 2.22 .378 .374 .455 −1.06 .449 .584
80 .520 −.366 1.46 .250 .247 .303 −.695 .297 .404
85 .260 −.182 .721 .124 .122 .151 −.342 .147 .204
90 0 0 0 0 0 0 0 0 0

Table 27. Values of  for [(±θ)m]s and [(+θ)2m]s Laminates (m = 1, 2, ...)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 1.55 .653 −2.75 3.69 2.12 7.37 .428 6.92 −.409
5 1.54 .657 −2.81 3.60 2.09 6.99 .434 6.58 −.403
10 1.51 .670 −2.98 3.34 2.02 6.02 .453 5.72 −.383
15 1.46 .692 −3.34 2.98 1.90 4.87 .485 4.67 −.347
20 1.40 .723 −4.13 2.57 1.76 3.80 .530 3.68 −.292
25 1.32 .762 −6.33 2.17 1.60 2.92 .590 2.85 −.210
30 1.24 .810 −29.6 1.81 1.44 2.23 .666 2.19 −.088
35 1.16 .866 6.46 1.49 1.28 1.70 .759 1.69 .102
40 1.08 .930 2.18 1.22 1.13 1.30 .870 1.30 .415
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 .928 1.08 .458 .819 .883 .767 1.15 .770 2.41
55 .862 1.15 .155 .672 .781 .587 1.32 .593 9.83
60 .805 1.23 −.033 .554 .696 .449 1.50 .456 −11.4
65 .756 1.31 −.158 .461 .625 .343 1.69 .351 −4.76
70 .715 1.38 −.242 .389 .569 .263 1.89 .272 −3.42
75 .684 1.44 −.299 .336 .526 .206 2.06 .214 −2.88
80 .662 1.49 −.336 .299 .496 .166 2.21 .175 −2.61
85 .649 1.52 −.356 .278 .478 .143 2.31 .152 −2.48
90 .644 1.53 −.363 .271 .472 .136 2.34 .145 −2.45

  α 3

  N y1
N x1

c
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Table 28. Values of  for [(+θ)2m]s Laminates (m = 1, 2, ...)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 .048 −.030 −.336 .229 .096 .523 −.050 .492 −.124
10 .093 −.060 −.724 .426 .185 .914 −.100 .859 −.252
15 .133 −.089 −1.25 .571 .260 1.12 −.149 1.06 −.389
20 .167 −.116 −2.15 .659 .318 1.17 −.197 1.12 −.542
25 .193 −.142 −4.37 .697 .357 1.14 −.244 1.10 −.721
30 .210 −.165 −26.5 .697 .379 1.06 −.289 1.03 −.942
35 .220 −.184 7.50 .671 .384 .967 −.331 .943 −1.23
40 .222 −.200 3.35 .628 .377 .864 −.369 .846 −1.66
45 .217 −.210 2.14 .574 .359 .761 −.401 .747 −2.38
50 .205 −.215 1.54 .514 .333 .662 −.424 .652 −4.01
55 .189 −.213 1.16 .451 .300 .568 −.437 .559 −12.1
60 .169 −.203 .895 .386 .264 .477 −.434 .471 10.8
65 .146 −.186 .690 .321 .223 .392 −.414 .387 3.43
70 .119 −.161 .521 .256 .181 .309 −.372 .306 1.85
75 .091 −.128 .375 .192 .137 .229 −.307 .227 1.12
80 .062 −.090 .243 .128 .092 .152 −.220 .150 .658
85 .031 −.046 .120 .064 .046 .076 −.115 .075 .307
90 0 0 0 0 0 0 0 0 0

 Table 29. Values of  for [(±θ)m]s and [(+θ)2m]s Laminates With m = 1, 2, ... (see ref. 5, fig. 25)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 .697 .561 .312 .368 .403 .478 .250 .319 .279
5 .715 .596 .390 .447 .469 .551 .324 .406 .460
10 .768 .699 .617 .674 .661 .757 .539 .659 .954
15 .851 .860 .966 1.02 .954 1.06 .880 1.04 1.57
20 .957 1.06 1.38 1.41 1.30 1.40 1.30 1.47 2.09
25 1.08 1.28 1.77 1.77 1.64 1.72 1.72 1.86 2.42
30 1.19 1.48 2.09 2.06 1.92 1.96 2.08 2.16 2.60
35 1.29 1.65 2.30 2.26 2.12 2.13 2.33 2.36 2.70
40 1.36 1.75 2.42 2.36 2.24 2.23 2.47 2.46 2.74
45 1.38 1.79 2.46 2.40 2.28 2.26 2.51 2.50 2.76
50 1.36 1.75 2.42 2.36 2.24 2.23 2.47 2.46 2.74
55 1.29 1.65 2.30 2.26 2.12 2.13 2.33 2.36 2.70
60 1.19 1.48 2.09 2.06 1.92 1.96 2.78 2.16 2.60
65 1.08 1.28 1.77 1.77 1.64 1.72 1.72 1.86 2.42
70 .957 1.06 1.38 1.41 1.30 1.40 1.30 1.47 2.09
75 .851 .860 .966 1.02 .954 1.06 .880 1.04 1.57
80 .768 .699 .617 .674 .661 .757 .539 .659 .954
85 .715 .596 .390 .447 .469 .551 .324 .406 .460
90 .697 .561 .312 .368 .403 .478 .250 .319 .279

  N xy1
N x1

c

   β =
D12 + 2D66

D11D22
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Table 30. Values of  for [±θ]s Laminates (see ref. 5, fig. 26)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 .032 .069 .115 .116 .105 .113 .110 .123 .184
10 .063 .136 .228 .230 .208 .222 .219 .243 .356
15 .090 .199 .333 .335 .303 .322 .322 .355 .496
20 .112 .255 .425 .424 .386 .405 .414 .449 .589
25 .127 .300 .496 .493 .452 .469 .488 .519 .642
30 .133 .332 .543 .538 .497 .512 .538 .565 .670
35 .131 .348 .568 .562 .522 .536 .564 .589 .683
40 .119 .347 .574 .569 .527 .544 .567 .595 .688
45 .099 .329 .561 .558 .515 .536 .549 .585 .686
50 .075 .295 .528 .530 .483 .512 .509 .557 .676
55 .049 .248 .474 .482 .431 .471 .443 .510 .657
60 .025 .193 .394 .410 .358 .410 .352 .437 .621
65 .006 .137 .293 .317 .269 .330 .243 .338 .557
70 −.007 .088 .186 .213 .177 .238 .136 .225 .449
75 −.012 .049 .094 .119 .098 .149 .055 .122 .296
80 −.012 .024 .035 .053 .044 .079 .010 .051 .140
85 −.007 .009 .009 .018 .015 .032 −.003 .015 .042
90 0 0 0 0 0 0 0 0 0

Table 31. Values of  for [±θ]s Laminates (see ref. 5, fig. 27)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 −.007 .009 .009 .018 .015 .032 −.003 .015 .042
10 −.012 .024 .035 .053 .044 .079 .010 .051 .140
15 −.012 .049 .094 .119 .098 .149 .055 .122 .296
20 −.007 .088 .186 .213 .177 .238 .136 .225 .449
25 .006 .137 .293 .317 .269 .330 .243 .338 .557
30 .025 .193 .394 .410 .358 .410 .352 .437 .621
35 .049 .248 .474 .482 .431 .471 .443 .510 .657
40 .075 .295 .528 .530 .483 .512 .509 .557 .676
45 .099 .329 .561 .558 .515 .536 .549 .585 .686
50 .119 .347 .574 .569 .527 .544 .567 .595 .688
55 .131 .348 .568 .562 .522 .536 .564 .589 .683
60 .133 .332 .543 .538 .497 .512 .538 .565 .670
65 .127 .300 .496 .493 .452 .469 .488 .519 .642
70 .112 .255 .425 .424 .386 .405 .414 .449 .589
75 .090 .199 .333 .335 .303 .322 .322 .355 .496
80 .063 .136 .228 .230 .208 .222 .219 .243 .356
85 .032 .069 .115 .116 .105 .113 .110 .123 .184
90 0 0 0 0 0 0 0 0 0

   γ =
D16

D11
3 D22

1/4

   δ =
D26

D11D22
3 1/4
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Table 32. Values of for [(±θ)m]s and [(+θ)2m]s Laminates (m = 1, 2, ...)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 1.12 1.45 1.93 1.97 1.83 1.98 1.82 2.05 2.93
5 1.12 1.44 1.92 1.96 1.82 1.97 1.82 2.04 2.90
10 1.11 1.43 1.89 1.93 1.80 1.92 1.80 2.00 2.79
15 1.11 1.40 1.83 1.86 1.74 1.85 1.76 1.93 2.56
20 1.10 1.36 1.74 1.75 1.65 1.73 1.68 1.81 2.24
25 1.08 1.30 1.61 1.61 1.54 1.59 1.57 1.66 1.92
30 1.07 1.24 1.45 1.45 1.41 1.43 1.43 1.48 1.63
35 1.05 1.16 1.29 1.29 1.26 1.28 1.28 1.31 1.38
40 1.02 1.08 1.14 1.14 1.13 1.13 1.14 1.15 1.17
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 .977 .927 .878 .879 .888 .883 .881 .873 .852
55 .957 .863 .774 .775 .791 .782 .780 .765 .725
60 .939 .809 .689 .688 .712 .697 .698 .675 .615
65 .924 .767 .623 .620 .650 .629 .637 .604 .522
70 .912 .736 .576 .570 .604 .577 .595 .552 .446
75 .903 .714 .546 .538 .575 .542 .570 .519 .391
80 .898 .700 .529 .519 .557 .520 .556 .500 .359
85 .894 .692 .521 .509 .548 .508 .550 .491 .345
90 .893 .690 .519 .507 .546 .505 .549 .489 .342

Table 33. Values of  for [(+θ)2m]s Laminates With m = 1, 2, ... (see fig. 22)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 .043 .092 .154 .155 .140 .151 .147 .164 .245
10 .084 .182 .304 .306 .277 .296 .292 .325 .475
15 .120 .266 .445 .446 .404 .429 .429 .473 .661
20 .149 .340 .567 .566 .515 .540 .552 .598 .785
25 .169 .400 .661 .657 .603 .625 .650 .692 .856
30 .178 .443 .724 .717 .663 .682 .717 .753 .893
35 .174 .464 .758 .750 .696 .715 .752 .785 .911
40 .158 .463 .765 .758 .703 .725 .757 .793 .917
45 .132 .439 .747 .744 .686 .715 .733 .780 .914
50 .099 .394 .704 .707 .644 .683 .679 .743 .902
55 .065 .331 .631 .642 .574 .628 .591 .679 .876
60 .033 .258 .526 .547 .477 .547 .469 .582 .828
65 .008 .183 .391 .422 .359 .440 .323 .451 .743
70 −.009 .117 .248 .284 .236 .317 .181 .300 .599
75 −.016 .066 .126 .159 .131 .199 .073 .163 .394
80 −.016 .032 .047 .071 .059 .105 .014 .067 .187
85 −.009 .012 .011 .023 .020 .042 −.004 .019 .056
90 0 0 0 0 0 0 0 0 0

  D11
D22

1/4

   γ =
D16

D11
3 D22

1/4
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Table 34. Values of  for [(+θ)2m]s Laminates With m = 1, 2, ... (see fig. 23)

θ, 
deg

Material systems

Boron-Al
S-glass-
epoxy

Kevlar 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

0 0 0 0 0 0 0 0 0 0
5 −.009 .012 .011 .023 .020 .042 −.004 .019 .056

10 −.016 .032 .047 .071 .059 .105 .014 .067 .187
15 −.016 .066 .126 .159 .131 .199 .073 .163 .394
20 −.009 .117 .248 .284 .236 .317 .181 .300 .599
25 .008 .183 .391 .422 .359 .440 .323 .451 .743
30 .033 .258 .526 .547 .477 .547 .469 .582 .828
35 .065 .331 .631 .642 .574 .628 .591 .679 .876
40 .099 .394 .704 .707 .644 .683 .679 .743 .902
45 .132 .439 .747 .744 .686 .715 .733 .780 .914
50 .158 .463 .765 .758 .703 .725 .757 .793 .917
55 .174 .464 .758 .750 .696 .715 .752 .785 .911
60 .178 .443 .724 .717 .663 .682 .717 .753 .893
65 .169 .400 .661 .657 .603 .625 .650 .692 .856
70 .149 .340 .567 .566 .515 .540 .552 .598 .785
75 .120 .266 .445 .446 .404 .429 .429 .473 .661
80 .084 .182 .304 .306 .277 .296 .292 .325 .475
85 .043 .092 .154 .155 .140 .151 .147 .164 .245
90 0 0 0 0 0 0 0 0 0

   δ =
D26

D11D22
3 1/4
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Table 35. Values of Buckling Coefficient Kx for Plates Subjected to Axial Compression and Transverse Tension or
Compression Loads (γ = δ = 0, see fig. 26) 

Buckling coefficient, Kx  

*L2

Simply supported edges Clamped edges

Orthotropy parameter, β Orthotropy parameter, β 

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 6.47 8.00 9.47 10.9 12.3 13.7 9.20 10.8 12.3 13.8 15.2 16.6
−0.9 6.09 7.60 9.05 10.5 11.8 13.2 8.84 10.4 11.9 13.3 14.8 16.1
−0.8 5.72 7.20 8.62 10.0 11.3 12.7 8.47 10.0 11.5 12.9 14.3 15.7
−0.7 5.36 6.80 8.19 9.54 10.9 12.2 8.12 9.61 11.1 12.5 13.8 15.2
−0.6 5.00 6.40 7.76 9.08 10.4 11.7 7.76 9.23 10.6 12.0 13.4 14.7
−0.5 4.65 6.00 7.32 8.61 9.87 11.1 7.41 8.84 10.2 11.6 12.9 14.2
−0.4 4.30 5.60 6.87 8.12 9.36 10.6 7.07 8.46 9.82 11.1 12.5 13.7
−0.3 3.96 5.20 6.42 7.63 8.82 10.0 6.73 8.08 9.41 10.7 12.0 13.2
−0.2 3.63 4.80 5.96 7.11 8.26 9.39 6.40 7.71 8.99 10.3 11.5 12.7
−0.1 3.31 4.40 5.49 6.57 7.66 8.74 6.08 7.34 8.58 9.80 11.0 12.2

0 3.00 4.00 5.00 6.00 7.00 8.00 5.77 6.97 8.16 9.33 10.5 11.6
0.1 2.71 3.60 4.49 5.36 6.23 7.08 5.46 6.61 7.74 8.86 9.97 11.1
0.2 2.43 3.20 3.93 4.58 5.00 5.00 5.17 6.26 7.33 8.38 9.43 10.5
0.3 2.18 2.80 3.27 3.33 3.33 3.33 4.89 5.91 6.91 7.89 8.86 9.80
0.4 1.94 2.40 2.50 2.50 2.50 2.5 4.62 5.57 6.49 7.38 8.24 9.05
0.5 1.73 2.00 2.00 2.00 2.00 2.00 4.36 5.23 6.07 6.85 7.55 8.00
0.6 1.54 1.67 1.67 1.67 1.67 1.67 4.11 4.91 5.65 6.29 6.67 6.67
0.7 1.38 1.43 1.43 1.43 1.43 1.43 3.88 4.60 5.23 5.67 5.71 5.71
0.8 1.23 1.25 1.25 1.25 1.25 1.25 3.66 4.31 4.82 5.00 5.00 5.00
0.9 1.11 1.11 1.11 1.11 1.11 1.11 3.46 4.02 4.40 4.44 4.44 4.44
1.0 1.00 1.00 1.00 1.00 1.00 1.00 3.27 3.76 4.00 4.00 4.00 4.00
1.1 0.91 0.91 0.91 0.91 0.91 0.91 3.09 3.51 3.64 3.64 3.64 3.64
1.2 0.83 0.83 0.83 0.83 0.83 0.83 2.92 3.27 3.33 3.33 3.33 3.33
1.3 0.77 0.77 0.77 0.77 0.77 0.77 2.77 3.05 3.08 3.08 3.08 3.08
1.4 0.71 0.71 0.71 0.71 0.71 0.71 2.63 2.85 2.86 2.86 2.86 2.86
1.5 0.67 0.67 0.67 0.67 0.67 0.67 2.49 2.67 2.67 2.67 2.67 2.67

  
* L2 =

N y1

N x1
c

D11
D22

1/2
and K y = L2K x .
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Table 36. Values of Buckling Coefficient Kx for Plates Subjected to Axial Compression and Transverse Tension or
Compression Loads (γ = δ = 0, see fig. 27)

Buckling coefficient, Kx  

*L2

Simply supported edges Clamped edges

Orthotropy parameter, β  Orthotropy parameter, β  

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−10 42.1 44.0 45.9 47.8 49.6 51.4 45.0 46.9 48.8 50.7 52.6 54.4
−9 38.1 40.0 41.9 43.8 45.6 47.3 40.9 42.8 44.7 46.6 48.5 50.3
−8 34.1 36.0 37.9 39.7 41.5 43.3 36.9 38.8 40.7 42.5 44.4 46.2
−7 30.1 32.0 33.9 35.7 37.4 39.2 32.8 34.7 36.6 38.4 40.2 42.0
−6 26.1 28.0 29.8 31.6 33.4 35.1 28.8 30.7 32.6 34.4 36.2 37.9
−5 22.1 24.0 25.8 27.6 29.3 31.0 24.8 26.7 28.5 30.3 32.0 33.7
−4 18.2 20.0 21.8 23.5 25.2 26.8 20.8 22.7 24.5 26.2 27.9 29.6
−3 14.2 16.0 17.7 19.4 21.0 22.6 16.9 18.7 20.4 22.1 23.7 25.4
−2 10.3 12.0 13.6 15.2 16.7 18.2 13.0 14.7 16.4 18.0 19.5 21.0
−1 6.47 8.00 9.47 10.9 12.3 13.7 9.20 10.8 12.3 13.7 15.2 16.6

Table 37. Buckling Coefficient Ratio for Simply Supported Plates Subjected to Axial Compression and Transverse
Tension or Compression Loads and With γ = δ = 0.1 or 0.2 (see figs. 28 and 29)

Buckling coefficient ratio,   

β

γ  = δ = 0.1 γ  ==== δ ==== 0.2

Load factor, L2  Load factor, L2  

−10 −4 −2 −1 −0.5 0 0.1 −10 −4 −2 −1 −0.5 0 0.1

3 .999 .997 .996 .996 .995 .993 .993 .994 .990 .986 .982 .979 .974 .972
2.8 .999 .997 .996 .995 .994 .993 .993 .994 .989 .985 .980 .977 .971 .970
2.6 .998 .997 .996 .995 .994 .992 .992 .994 .988 .983 .979 .975 .969 .968
2.4 .998 .997 .996 .994 .993 .991 .991 .994 .988 .982 .977 .972 .966 .965
2.2 .998 .997 .995 .994 .992 .991 .990 .994 .987 .981 .974 .969 .962 .961
2 .998 .997 .995 .993 .991 .990 .989 .993 .986 .979 .971 .965 .958 .957

1.8 .998 .996 .994 .992 .990 .988 .988 .993 .985 .977 .968 .961 .953 .953
1.6 .998 .996 .994 .991 .989 .987 .987 .993 .984 .974 .964 .955 .947 .947
1.4 .998 .996 .993 .990 .987 .985 .985 .992 .983 .971 .959 .949 .940 .940
1.2 .998 .995 .992 .988 .985 .983 .983 .992 .981 .967 .952 .941 .931 .932
1 .998 .995 .991 .986 .983 .980 .981 .992 .979 .963 .944 .930 .920 .921

0.8 .998 .994 .990 .984 .980 .977 .977 .991 .978 .957 .934 .917 .906 .907
0.6 .998 .994 .988 .981 .975 .973 .973 .991 .975 .951 .920 .899 .887 .889
0.4 .998 .993 .986 .976 .970 .967 .967 .990 .972 .942 .901 .873 .862 .864
0.2 .997 .992 .983 .970 .961 .958 .959 .990 .969 .929 .873 .837 .827 .830

  
* L2 =

N y1

N x1
c

D11
D22

1/2
and K y = L2K x .

   K x
K x γ=δ=0
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Table 38. Buckling Coefficient Ratio for Simply Supported Plates Subjected to Axial Compression and Transverse
Tension or Compression Loads and With γ = δ = 0.3 or 0.4 (see figs. 28 and 29) 

Buckling coefficient ratio,  

β

γ  ==== δ ==== 0.3 γ  ==== δ ==== 0.4

Load factor, L2  Load factor, L2  

−10 −4 −2 −1 −0.5 0 0.1 −10 −4 −2 −1 −0.5 0 0.1

3 .987 .977 .967 .959 .952 .940 .937 .977 .958 .941 .926 .913 .892 .888
2.8 .987 .975 .965 .955 .947 .935 .932 .976 .955 .937 .919 .905 .882 .878
2.6 .986 .973 .962 .951 .942 .929 .927 .975 .952 .932 .911 .895 .871 .868
2.4 .985 .972 .959 .946 .936 .922 .920 .974 .949 .925 .902 .883 .858 .855
2.2 .985 .970 .955 .940 .929 .913 .912 .973 .946 .918 .891 .869 .843 .841
2 .985 .968 .951 .934 .920 .904 .903 .972 .942 .910 .878 .853 .825 .824

1.8 .984 .965 .946 .925 .909 .892 .892 .971 .937 .900 .862 .833 .804 .803
1.6 .983 .963 .940 .916 .897 .878 .879 .970 .931 .889 .843 .808 .778 .778
1.4 .982 .960 .933 .903 .881 .862 .862 .968 .926 .874 .818 .777 .745 .747
1.2 .982 .956 .924 .888 .861 .841 .842 .967 .920 .857 .786 .736 .705 .707
1 .981 .952 .913 .868 .835 .814 .816 .965 .911 .834 .743 .682 .651 .655

0.8 .980 .947 .899 .842 .801 .780 .783 .964 .901 .804 .682 .606 .578 .583
0.6 .979 .942 .882 .805 .754 .734 .737 .962 .890 .762 .583 .484 .465  .471
0.4 .978 .934 .857 .751 .687 .669 .673
0.2 .977 .926 .822 .664 .579 .568 .574

Table 39. Buckling Coefficient Ratio for Simply Supported Plates Subjected to Axial Compression and Transverse
Tension or Compression Loads and With γ = δ = 0.5 or 0.6 (see figs. 28 and 29)

Buckling coefficient ratio,  

β

γ  ==== δ ==== 0.5 γ  ==== δ ==== 0.6

Load factor, L2  Load factor, L2  

−10 −4 −2 −1 −0.5 0 0.1 −10 −4 −2 −1 −0.5 0 0.1

3 .963 .933 .906 .881 .861 .828 .822 .946 .900 .859 .822 .792 .747 .739
2.8 .962 .929 .898 .869 .847 .812 .807 .944 .894 .848 .804 .770 .723 .716
2.6 .960 .923 .889 .856 .830 .794 .790 .942 .886 .833 .783 .744 .695 .690
2.4 .959 .918 .879 .841 .810 .773 .770 .939 .878 .816 .758 .713 .662 .658
2.2 .957 .913 .867 .822 .787 .748 .746 .937 .868 .797 .726 .674 .622 .620
2 .956 .906 .853 .799 .759 .718 .717 .934 .857 .773 .687 .626 .574 .573

1.8 .954 .898 .836 .771 .723 .681 .681 .932 .845 .742 .635 .562 .512 .513
1.6 .952 .889 .814 .735 .678 .636 .637 .929 .829 .703 .562 .474 .429 .432
1.4 .950 .879 .788 .687 .619 .578 .581 .926 .812 .646 .436 .319 .285 .289
1.2 .947 .867 .753 .620 .536 .499 .503
1 .945 .852 .703 .508 .399 .371 .376

   K x
K x γ=δ=0

   K x
K x γ=δ=0
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Table 40. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ = δ = 0, see figs. 31 and 32)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = ±0.5 Shear load factor, L3 = ±1

Orthotropy parameter, β  Orthotropy parameter, β  

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 5.55 6.97 8.35 9.70 11.0 12.3 4.09 5.23 6.35 7.47 8.58 9.68
−0.9 5.23 6.61 7.96 9.28 10.6 11.9 3.87 4.97 6.05 7.13 8.20 9.27
−0.8 4.92 6.26 7.57 8.85 10.1 11.4 3.66 4.71 5.75 6.79 7.82 8.85
−0.7 4.61 5.91 7.18 8.43 9.66 10.9 3.46 4.46 5.46 6.45 7.44 8.43
−0.6 4.31 5.56 6.79 8.00 9.19 10.4 3.26 4.22 5.16 6.11 7.06 8.00
−0.5 4.02 5.22 6.39 7.56 8.72 9.87 3.07 3.98 4.88 5.78 6.67 7.57
−0.4 3.74 4.88 6.00 7.12 8.23 9.33 2.89 3.74 4.59 5.44 6.28 7.13
−0.3 3.47 4.54 5.61 6.67 7.72 8.78 2.71 3.51 4.31 5.10 5.89 6.67
−0.2 3.20 4.21 5.21 6.21 7.20 8.20 2.54 3.29 4.03 4.76 5.49 6.21
−0.1 2.95 3.88 4.81 5.73 6.65 7.57 2.37 3.07 3.76 4.43 5.08 5.73

0 2.70 3.56 4.40 5.24 6.06 6.88 2.21 2.86 3.48 4.08 4.66 5.23
0.1 2.47 3.24 3.99 4.71 5.40 6.07 2.06 2.65 3.21 3.73 4.23 4.69
0.2 2.25 2.92 3.55 4.12 4.60 4.93 1.92 2.45 2.93 3.37 3.76 4.10
0.3 2.04 2.61 3.08 1.78 2.24 2.65 2.98 3.22
0.4 1.85 2.30 1.64 2.04 2.35 2.50
0.5 1.67 1.98 1.52 1.84
0.6 1.50 1.40 1.64
0.7 1.35 1.28
0.8 1.22 1.18
0.9 1.10 1.08
1.0 .999 .988

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 41. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ = δ = 0, see figs. 31 and 32)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = ±1.5 Shear load factor, L3 = ±2

Orthotropy parameter, β Orthotropy parameter, β

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 3.04 3.91 4.77 5.62 6.48 7.34 2.36 3.03 3.69 4.35 5.01 5.67
−0.9 2.90 3.73 4.55 5.37 6.20 7.02 2.26 2.90 3.54 4.17 4.80 5.42
−0.8 2.76 3.55 4.34 5.13 5.91 6.69 2.17 2.78 3.39 3.99 4.59 5.18
−0.7 2.63 3.38 4.13 4.88 5.63 6.37 2.08 2.67 3.24 3.82 4.38 4.95
−0.6 2.50 3.22 3.93 4.64 5.34 6.05 1.99 2.55 3.10 3.64 4.18 4.71
−0.5 2.38 3.06 3.73 4.40 5.06 5.72 1.91 2.44 2.96 3.47 3.98 4.47
−0.4 2.26 2.90 3.54 4.16 4.78 5.40 1.83 2.33 2.82 3.31 3.78 4.24
−0.3 2.14 2.75 3.34 3.93 4.50 5.07 1.75 2.23 2.69 3.14 3.58 4.00
−0.2 2.03 2.60 3.16 3.70 4.23 4.74 1.67 2.12 2.56 2.98 3.38 3.77
−0.1 1.92 2.46 2.97 3.47 3.95 4.41 1.60 2.02 2.43 2.82 3.19 3.54

0 1.82 2.31 2.79 3.24 3.67 4.07 1.52 1.93 2.30 2.66 2.99 3.31
0.1 1.72 2.18 2.61 3.01 3.38 3.73 1.45 1.83 2.18 2.50 2.80 3.07
0.2 1.62 2.04 2.43 2.78 3.09 3.37 1.38 1.74 2.05 2.34 2.60 2.84
0.3 1.52 1.91 2.25 2.54 2.79 2.99 1.32 1.64 1.93 2.18 2.40 2.59
0.4 1.43 1.78 2.07 2.29 2.44 1.25 1.55 1.81 2.02 2.19 2.33
0.5 1.34 1.65 1.87 2.00 1.19 1.46 1.68 1.85 1.96
0.6 1.26 1.52 1.66 1.13 1.37 1.55 1.66
0.7 1.18 1.39 1.07 1.28 1.41
0.8 1.10 1.25 1.01 1.19
0.9 1.03 .958 1.10
1.0 .955 .904

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 42. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ = δ = 0.2, see figs. 34 and 36) 

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −2 Shear load factor, L3 = −1.5

Orthotropy parameter, β  Orthotropy parameter, β  

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 3.17 3.86 4.54 5.21 5.88 6.54 4.02 4.90 5.78 6.65 7.52 8.39
−0.9 3.03 3.69 4.35 4.99 5.63 6.27 3.82 4.68 5.52 6.36 7.20 8.03
−0.8 2.90 3.54 4.16 4.78 5.39 5.99 3.64 4.46 5.27 6.07 6.87 7.66
−0.7 2.77 3.38 3.98 4.56 5.14 5.72 3.46 4.24 5.02 5.78 6.54 7.30
−0.6 2.65 3.23 3.80 4.35 4.90 5.44 3.28 4.03 4.77 5.50 6.22 6.94
−0.5 2.53 3.08 3.62 4.15 4.66 5.17 3.11 3.82 4.52 5.21 5.89 6.57
−0.4 2.41 2.94 3.45 3.94 4.42 4.90 2.94 3.62 4.28 4.93 5.57 6.20
−0.3 2.29 2.80 3.28 3.74 4.19 4.62 2.77 3.42 4.04 4.65 5.24 5.82
−0.2 2.18 2.66 3.11 3.53 3.95 4.35 2.61 3.22 3.80 4.36 4.91 5.44
−0.1 2.07 2.52 2.94 3.33 3.71 4.07 2.46 3.03 3.57 4.08 4.57 5.05

0 1.96 2.38 2.77 3.13 3.47 3.79 2.30 2.83 3.33 3.79 4.23 4.65
0.1 1.86 2.25 2.60 2.93 3.23 3.50 2.15 2.64 3.09 3.50 3.88 4.23
0.2 1.75 2.11 2.44 2.72 2.98 3.21 2.01 2.46 2.85 3.20 3.51 3.78
0.3 1.65 1.98 2.27 2.51 2.71 2.89 1.86 2.27 2.60 2.88 3.09 3.25
0.4 1.55 1.85 2.09 2.28 2.41 2.49 1.72 2.07 2.33 2.49
0.5 1.45 1.71 1.90 2.00 1.59 1.87
0.6 1.35 1.57 1.46 1.66
0.7 1.26 1.42 1.33
0.8 1.17 1.21
0.9 1.08 1.10
1.0 .989 .998

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 43. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.2, see figs. 34 and 36)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −1 Shear load factor, L3 = −0.5

Orthotropy parameter, β Orthotropy parameter, β

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 5.18 6.34 7.47 8.59 9.70 10.8 6.31 7.76 9.14 10.5 11.8 13.1
−0.9 4.91 6.03 7.13 8.21 9.29 10.4 5.96 7.37 8.73 10.0 11.3 12.6
−0.8 4.64 5.73 6.79 7.84 8.88 9.91 5.60 6.99 8.31 9.60 10.9 12.1
−0.7 4.38 5.42 6.45 7.46 8.46 9.46 5.25 6.60 7.90 9.16 10.4 11.6
−0.6 4.13 5.13 6.11 7.07 8.04 8.99 4.91 6.22 7.48 8.70 9.91 11.1
−0.5 3.87 4.83 5.77 6.69 7.61 8.52 4.57 5.84 7.06 8.24 9.42 10.6
−0.4 3.63 4.54 5.43 6.31 7.17 8.04 4.24 5.46 6.63 7.78 8.91 10.0
−0.3 3.39 4.26 5.09 5.92 6.73 7.54 3.91 5.08 6.20 7.30 8.38 9.46
−0.2 3.16 3.97 4.76 5.52 6.28 7.02 3.59 4.70 5.76 6.80 7.83 8.85
−0.1 2.93 3.69 4.42 5.12 5.81 6.48 3.27 4.31 5.31 6.29 7.25 8.20

0 2.70 3.41 4.08 4.71 5.32 5.90 2.97 3.93 4.85 5.74 6.62 7.47
0.1 2.49 3.13 3.73 4.28 4.79 5.27 2.68 3.55 4.37 5.15 5.89 6.59
0.2 2.28 2.86 3.37 3.82 4.20 4.52 2.41 3.17 3.85 4.44 4.89
0.3 2.07 2.57 2.98 3.26 2.15 2.78 3.24
0.4 1.88 2.28 2.50 1.92 2.39
0.5 1.70 1.98 1.71 2.00
0.6 1.52 1.52
0.7 1.37 1.36
0.8 1.23 1.22
0.9 1.11 1.10
1.0 1.00 .998

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 44. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.2, see figs. 33 and 35)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 0.5 Shear load factor, L3 = 1

Orthotropy parameter, β Orthotropy parameter, β

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 4.04 5.59 7.06 8.47 9.85 11.2 2.68 3.84 5.00 6.13 7.26 8.38
−0.9 3.78 5.27 6.70 8.08 9.42 10.7 2.53 3.64 4.75 5.84 6.92 8.00
−0.8 3.54 4.97 6.34 7.68 8.99 10.3 2.39 3.45 4.50 5.55 6.59 7.63
−0.7 3.31 4.67 5.99 7.29 8.56 9.81 2.26 3.27 4.27 5.26 6.26 7.25
−0.6 3.08 4.38 5.65 6.89 8.12 9.33 2.14 3.09 4.03 4.98 5.92 6.86
−0.5 2.87 4.10 5.30 6.49 7.67 8.84 2.02 2.91 3.81 4.70 5.59 6.48
−0.4 2.67 3.82 4.96 6.09 7.22 8.34 1.91 2.75 3.59 4.42 5.25 6.09
−0.3 2.48 3.56 4.63 5.69 6.76 7.82 1.80 2.59 3.37 4.15 4.92 5.69
−0.2 2.31 3.30 4.30 5.29 6.28 7.27 1.70 2.43 3.16 3.88 4.59 5.29
−0.1 2.14 3.06 3.97 4.88 5.78 6.69 1.61 2.29 2.96 3.61 4.25 4.88

0 1.98 2.82 3.65 4.46 5.27 6.06 1.52 2.15 2.76 3.35 3.92 4.46
0.1 1.84 2.59 3.33 4.03 4.71 5.37 1.43 2.01 2.56 3.08 3.58 4.04
0.2 1.70 2.38 3.01 3.59 4.10 4.53 1.35 1.88 2.37 2.82 3.23 3.59
0.3 1.58 2.17 2.69 3.10 3.33 1.27 1.76 2.19 2.56 2.87 3.11
0.4 1.46 1.97 2.36 1.20 1.64 2.00 2.29 2.47
0.5 1.35 1.78 2.00 1.13 1.52 1.82 1.99
0.6 1.25 1.59 1.07 1.41 1.63
0.7 1.16 1.42 1.01 1.30
0.8 1.08 .953 1.20
0.9 .999 .900 1.10
1.0 .928 .850 1.00

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 45. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ = δ = 0.2, see figs. 33 and 35)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 1.5 Shear load factor, L3 = 2

Orthotropy parameter, β Orthotropy parameter, β

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

−1.0 1.91 2.77 3.63 4.49 5.35 6.20 1.47 2.12 2.78 3.43 4.08 4.73
−0.9 1.83 2.65 3.47 4.29 5.10 5.92 1.41 2.04 2.67 3.29 3.91 4.53
−0.8 1.75 2.53 3.31 4.09 4.86 5.64 1.36 1.96 2.56 3.15 3.74 4.33
−0.7 1.67 2.41 3.15 3.89 4.63 5.36 1.31 1.88 2.45 3.01 3.57 4.13
−0.6 1.59 2.30 3.00 3.70 4.39 5.09 1.26 1.81 2.35 2.88 3.41 3.93
−0.5 1.52 2.19 2.85 3.51 4.16 4.81 1.21 1.73 2.25 2.75 3.25 3.73
−0.4 1.45 2.09 2.71 3.32 3.93 4.54 1.17 1.66 2.15 2.62 3.09 3.54
−0.3 1.39 1.99 2.57 3.14 3.71 4.26 1.12 1.60 2.06 2.50 2.93 3.35
−0.2 1.33 1.89 2.43 2.97 3.48 3.99 1.08 1.53 1.96 2.38 2.78 3.16
−0.1 1.27 1.79 2.30 2.79 3.26 3.72 1.04 1.47 1.87 2.26 2.62 2.97

0 1.21 1.70 2.18 2.62 3.05 3.45 1.00 1.41 1.79 2.14 2.48 2.79
0.1 1.16 1.62 2.05 2.45 2.83 3.18 .965 1.35 1.70 2.03 2.33 2.61
0.2 1.10 1.53 1.93 2.29 2.61 2.91 .930 1.29 1.62 1.91 2.18 2.43
0.3 1.05 1.45 1.81 2.13 2.40 2.63 .895 1.23 1.54 1.80 2.04 2.25
0.4 1.01 1.38 1.70 1.96 2.18 2.34 .862 1.18 1.46 1.69 1.90 2.07
0.5 .962 1.30 1.58 1.80 1.94 .830 1.13 1.38 1.59 1.75 1.87
0.6 .919 1.23 1.47 1.62 .799 1.08 1.30 1.48 1.60 1.66
0.7 .878 1.16 1.36 .770 1.03 1.23 1.36
0.8 .838 1.09 1.24 .741 .978 1.15 1.24
0.9 .801 1.02 .714 .931 1.07
1.0 .765 .958 .687 .885 .994

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 46. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.4, see figs. 38 and 40)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −2 Shear load factor, L3 = −1.5

Orthotropy parameter, β Orthotropy parameter, β

0.6 1 1.5 2 2.5 3 0.6 1 1.5 2 2.5 3

−1.0 4.03 4.61 5.31 6.01 6.69 7.37 5.02 5.77 6.68 7.58 8.47 9.35
−0.9 3.86 4.41 5.09 5.76 6.41 7.06 4.78 5.51 6.39 7.25 8.11 8.95
−0.8 3.68 4.22 4.87 5.51 6.14 6.76 4.55 5.24 6.09 6.92 7.74 8.56
−0.7 3.52 4.03 4.65 5.26 5.86 6.45 4.31 4.99 5.80 6.60 7.38 8.16
−0.6 3.35 3.84 4.44 5.02 5.58 6.14 4.08 4.73 5.51 6.27 7.02 7.75
−0.5 3.19 3.66 4.23 4.77 5.31 5.83 3.86 4.48 5.22 5.94 6.65 7.34
−0.4 3.03 3.48 4.02 4.53 5.03 5.52 3.64 4.23 4.93 5.62 6.28 6.93
−0.3 2.87 3.30 3.81 4.29 4.75 5.20 3.42 3.98 4.65 5.29 5.91 6.51
−0.2 2.72 3.12 3.60 4.05 4.48 4.89 3.20 3.74 4.36 4.96 5.53 6.08
−0.1 2.57 2.95 3.39 3.81 4.20 4.57 2.99 3.50 4.08 4.62 5.14 5.64

0 2.42 2.78 3.19 3.56 3.91 4.24 2.78 3.26 3.79 4.28 4.74 5.18
0.1 2.27 2.60 2.98 3.31 3.62 3.90 2.57 3.01 3.50 3.93 4.33 4.69
0.2 2.12 2.43 2.77 3.06 3.32 3.54 2.37 2.77 3.20 3.56 3.87 4.14
0.3 1.97 2.25 2.54 2.78 2.98 3.13 2.16 2.52 2.87 3.13 3.30
0.4 1.82 2.07 2.30 2.46 1.96 2.26 2.48
0.5 1.68 1.88 2.00 1.76 1.97
0.6 1.53 1.66 1.57
0.7 1.38 1.39
0.8 1.24 1.24
0.9 1.11 1.11
1.0

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 47. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.4, see figs. 38 and 40)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −1 Shear load factor, L3 = −0.5

Orthotropy parameter, β Orthotropy parameter, β

0.6 1 1.5 2 2.5 3 0.6 1 1.5 2 2.5 3

−1.0 6.18 7.17 8.35 9.50 10.6 11.8 6.51 7.85 9.36 10.8 12.2 13.5
−0.9 5.86 6.82 7.97 9.09 10.2 11.3 6.11 7.44 8.94 10.3 11.7 13.0
−0.8 5.54 6.47 7.59 8.68 9.75 10.8 5.71 7.03 8.51 9.89 11.2 12.5
−0.7 5.22 6.13 7.22 8.27 9.30 10.3 5.31 6.62 8.07 9.43 10.7 12.0
−0.6 4.90 5.79 6.84 7.85 8.85 9.83 4.91 6.21 7.64 8.97 10.2 11.5
−0.5 4.59 5.45 6.46 7.43 8.39 9.33 4.51 5.80 7.20 8.49 9.74 10.9
−0.4 4.28 5.11 6.08 7.01 7.92 8.81 4.12 5.39 6.75 8.01 9.22 10.4
−0.3 3.98 4.77 5.70 6.58 7.44 8.28 3.73 4.97 6.30 7.51 8.68 9.81
−0.2 3.67 4.44 5.31 6.14 6.94 7.72 3.35 4.56 5.83 7.00 8.12 9.20
−0.1 3.37 4.10 4.92 5.68 6.42 7.13 2.99 4.15 5.36 6.47 7.52 8.54

0 3.08 3.76 4.52 5.21 5.87 6.49 2.66 3.74 4.87 5.90 6.87 7.80
0.1 2.79 3.42 4.10 4.71 5.26 5.77 2.35 3.34 4.36 5.27 6.11 6.89
0.2 2.50 3.08 3.66 4.15 4.54 4.83 2.07 2.95 3.81 4.51 4.98
0.3 2.22 2.72 3.16 1.83 2.58 3.20
0.4 1.97 2.36 1.63 2.23
0.5 1.73 1.99 1.45 1.92
0.6 1.53 1.31 1.66
0.7 1.36 1.18
0.8 1.21 1.07
0.9 1.09 .983
1.0 .988 .904

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 48. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.4, see figs. 37 and 39)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 0.5 Shear load factor, L3 = 1

Orthotropy parameter, β Orthotropy parameter, β

0.6 1 1.5 2 2.5 3 0.6 1 1.5 2 2.5 3

−1.0 1.69 3.42 5.17 6.76 8.26 9.71 .955 2.11 3.36 4.56 5.74 6.90
−0.9 1.57 3.20 4.87 6.41 7.87 9.28 .911 2.00 3.18 4.33 5.46 6.57
−0.8 1.46 2.99 4.58 6.06 7.48 8.85 .871 1.89 3.01 4.10 5.18 6.24
−0.7 1.36 2.79 4.30 5.72 7.09 8.41 .833 1.79 2.85 3.88 4.90 5.91
−0.6 1.28 2.60 4.03 5.38 6.69 7.97 .798 1.70 2.69 3.67 4.63 5.58
−0.5 1.20 2.43 3.76 5.05 6.29 7.52 .765 1.61 2.55 3.46 4.36 5.26
−0.4 1.13 2.26 3.51 4.71 5.89 7.06 .735 1.53 2.40 3.25 4.09 4.93
−0.3 1.06 2.11 3.27 4.39 5.49 6.58 .707 1.45 2.27 3.06 3.83 4.60
−0.2 1.00 1.97 3.04 4.07 5.08 6.09 .680 1.38 2.14 2.86 3.57 4.27
−0.1 .949 1.84 2.81 3.75 4.67 5.59 .655 1.31 2.01 2.68 3.32 3.95

0 .900 1.72 2.60 3.44 4.26 5.06 .632 1.25 1.89 2.50 3.08 3.62
0.1 .855 1.61 2.40 3.14 3.84 4.50 .609 1.19 1.78 2.33 2.83 3.30
0.2 .813 1.50 2.21 2.84 3.41 3.90 .589 1.13 1.68 2.16 2.60 2.99
0.3 .775 1.40 2.03 2.55 2.96 3.25 .569 1.07 1.57 2.00 2.36 2.67
0.4 .739 1.31 1.86 2.26 2.49 .550 1.02 1.48 1.85 2.14 2.35
0.5 .706 1.23 1.69 1.97 .533 .975 1.38 1.70 1.91 2.00
0.6 .675 1.15 1.54 .516 .929 1.30 1.55 1.66
0.7 .646 1.08 1.39 .500 .886 1.21 1.40
0.8 .620 1.01 1.25 .484 .845 1.13
0.9 .595 .952 .470 .807 1.05
1.0 .571 .894 .456 .770 .979

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 49. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to Axial Compression,
Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.4, see figs. 37 and 39)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 1.5 Shear load factor, L3 = 2

Orthotropy parameter, β Orthotropy parameter, β

0.6 1 1.5 2 2.5 3 0.6 1 1.5 2 2.5 3

−1.0 .656 1.47 2.36 3.24 4.11 4.97 .498 1.11 1.79 2.45 3.10 3.75
−0.9 .634 1.41 2.26 3.09 3.92 4.74 .485 1.08 1.72 2.35 2.97 3.59
−0.8 .614 1.35 2.16 2.95 3.73 4.51 .473 1.04 1.65 2.25 2.84 3.42
−0.7 .595 1.29 2.06 2.81 3.55 4.28 .461 1.00 1.59 2.16 2.71 3.27
−0.6 .576 1.24 1.96 2.67 3.37 4.06 .450 .969 1.53 2.07 2.59 3.11
−0.5 .559 1.19 1.87 2.54 3.19 3.83 .439 .937 1.47 1.98 2.47 2.96
−0.4 .542 1.14 1.79 2.41 3.02 3.62 .429 .906 1.41 1.89 2.36 2.81
−0.3 .527 1.10 1.70 2.28 2.85 3.40 .419 .876 1.36 1.81 2.24 2.66
−0.2 .512 1.05 1.62 2.17 2.69 3.19 .410 .848 1.30 1.73 2.13 2.52
−0.1 .498 1.01 1.55 2.05 2.53 2.98 .401 .821 1.25 1.65 2.03 2.38

0 .484 .971 1.48 1.94 2.37 2.78 .392 .794 1.20 1.58 1.92 2.24
0.1 .471 .934 1.41 1.83 2.22 2.58 .384 .769 1.16 1.50 1.82 2.11
0.2 .459 .898 1.34 1.73 2.07 2.39 .375 .745 1.11 1.43 1.72 1.98
0.3 .447 .864 1.27 1.63 1.93 2.20 .368 .721 1.07 1.37 1.63 1.85
0.4 .436 .832 1.21 1.53 1.79 2.01 .360 .699 1.03 1.30 1.53 1.73
0.5 .425 .801 1.15 1.44 1.66 1.82 .353 .677 .984 1.24 1.44 1.61
0.6 .414 .771 1.10 1.35 1.52 1.63 .345 .657 .945 1.17 1.35 1.49
0.7 .404 .743 1.04 1.26 1.39 .339 .637 .907 1.11 1.27 1.37
0.8 .395 .715 .990 1.17 1.25 .332 .617 .870 1.05 1.18 1.24
0.9 .385 .690 .940 1.08 .326 .599 .834 .997 1.09
1.0 .376 .665 .891 .997 .319 .581 .800 .940 .999

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 50. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to
Axial Compression, Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.6,
see figs. 42 and 44)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −2 Shear load factor, L3 = −1.5

Orthotropy parameter, β Orthotropy parameter, β

1.5 2 2.5 3 1.5 2 2.5 3

−1.0 6.02 6.73 7.44 8.14 7.45 8.38 9.29 10.2
−0.9 5.76 6.45 7.13 7.80 7.12 8.01 8.90 9.78
−0.8 5.51 6.17 6.82 7.46 6.79 7.65 8.51 9.35
−0.7 5.26 5.89 6.51 7.12 6.46 7.29 8.11 8.91
−0.6 5.01 5.61 6.20 6.78 6.13 6.93 7.71 8.48
−0.5 4.76 5.33 5.89 6.43 5.80 6.56 7.31 8.03
−0.4 4.52 5.05 5.58 6.08 5.47 6.20 6.90 7.58
−0.3 4.27 4.78 5.27 5.73 5.15 5.83 6.49 7.12
−0.2 4.03 4.50 4.95 5.38 4.82 5.45 6.06 6.65
−0.1 3.79 4.22 4.63 5.02 4.49 5.08 5.63 6.16

0 3.54 3.94 4.31 4.65 4.15 4.69 5.18 5.64
0.1 3.29 3.65 3.97 4.26 3.81 4.28 4.71 5.09
0.2 3.04 3.34 3.61 3.84 3.45 3.84 4.17 4.44
0.3 2.76 3.00 3.18 3.30 3.04 3.29
0.4 2.44
0.5
0.6
0.7
0.8
0.9
1.0

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 51. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to
Axial Compression, Transverse Tension or Compression, and Shear Loads (γ =  δ = 0.6,
see figs. 42 and 44)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = −1 Shear load factor, L3 = −0.5

Orthotropy parameter, β  Orthotropy parameter, β  

1.5 2 2.5 3 1.5 2 2.5 3

−1.0 8.91 10.1 11.3 12.5 8.69 10.4 12.0 13.4
−0.9 8.51 9.69 10.9 12.0 8.23 9.94 11.5 12.9
−0.8 8.10 9.26 10.4 11.5 7.78 9.48 11.0 12.4
−0.7 7.69 8.82 9.92 11.0 7.31 9.01 10.5 11.9
−0.6 7.28 8.38 9.44 10.5 6.84 8.54 10.0 11.4
−0.5 6.86 7.93 8.96 9.95 6.37 8.05 9.51 10.9
−0.4 6.45 7.47 8.46 9.41 5.89 7.56 8.99 10.3
−0.3 6.02 7.01 7.95 8.85 5.40 7.06 8.45 9.73
−0.2 5.60 6.53 7.41 8.26 4.91 6.54 7.89 9.12
−0.1 5.16 6.04 6.86 7.63 4.42 6.00 7.29 8.47

0 4.71 5.52 6.26 6.94 3.93 5.43 6.65 7.74
0.1 4.24 4.97 5.60 6.15 3.45 4.82 5.91 6.85
0.2 3.74 4.33 4.75 4.99 2.99 4.15 4.89
0.3 3.17 2.58 3.32
0.4 2.22
0.5 1.90
0.6 1.64
0.7 1.43
0.8
0.9
1.0

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Table 52. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to
Axial Compression, Transverse Tension or Compression, and Shear Loads (γ = δ = 0.6, see
figs. 41 and 43)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 0.5 Shear load factor, L3 = 1

Orthotropy parameter, β Orthotropy parameter, β

1.5 2 2.5 3 1.5 2 2.5 3

−1.0 2.11 4.32 6.12 7.76 1.20 2.65 3.94 5.18
−0.9 1.96 4.05 5.79 7.38 1.14 2.50 3.73 4.91
−0.8 1.82 3.80 5.46 6.99 1.08 2.37 3.53 4.65
−0.7 1.69 3.55 5.13 6.61 1.03 2.24 3.33 4.38
−0.6 1.58 3.31 4.81 6.22 .981 2.11 3.13 4.13
−0.5 1.48 3.09 4.49 5.83 .936 2.00 2.95 3.87
−0.4 1.38 2.87 4.18 5.44 .895 1.88 2.77 3.62
−0.3 1.30 2.67 3.88 5.04 .856 1.78 2.60 3.38
−0.2 1.22 2.47 3.58 4.64 .820 1.68 2.43 3.14
−0.1 1.15 2.29 3.29 4.24 .786 1.59 2.27 2.91

0 1.08 2.12 3.01 3.84 .754 1.50 2.12 2.69
0.1 1.02 1.96 2.74 3.45 .725 1.41 1.98 2.48
0.2 .969 1.82 2.49 3.06 .697 1.34 1.84 2.27
0.3 .919 1.68 2.25 2.69 .670 1.26 1.71 2.08
0.4 .872 1.56 2.02 2.33 .646 1.19 1.59 1.90
0.5 .830 1.44 1.81 1.99 .623 1.13 1.47 1.72
0.6 .790 1.33 1.61 .601 1.07 1.37 1.56
0.7 .754 1.23 1.42 .580 1.01 1.26 1.40
0.8 .720 1.14 .560 .955 1.17 1.25
0.9 .688 1.05 .542 .904 1.08
1.0 .659 .975 .524 .856 .992

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2.
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Table 53. Values of Buckling Coefficient Kx for Simply Supported Plates Subjected to
Axial Compression, Transverse Tension or Compression, and Shear Loads (γ = δ = 0.6, see
figs. 41 and 43)

Buckling coefficient, Kx*

L2

Shear load factor, L3 = 1.5 Shear load factor, L3 = 2

Orthotropy parameter, β  Orthotropy parameter, β  

1.5 2 2.5 3 1.5 2 2.5 3

−1.0 .816 1.82 2.73 3.62 .616 1.36 2.03 2.69
−0.9 .786 1.73 2.60 3.44 .598 1.31 1.95 2.58
−0.8 .757 1.66 2.47 3.27 .581 1.26 1.87 2.46
−0.7 .730 1.58 2.35 3.10 .564 1.21 1.79 2.35
−0.6 .705 1.51 2.23 2.94 .548 1.17 1.71 2.24
−0.5 .680 1.44 2.12 2.78 .533 1.12 1.64 2.13
−0.4 .658 1.38 2.01 2.62 .519 1.08 1.57 2.03
−0.3 .636 1.32 1.91 2.47 .505 1.04 1.50 1.93
−0.2 .615 1.26 1.81 2.32 .492 1.00 1.43 1.83
−0.1 .596 1.20 1.71 2.18 .479 .966 1.37 1.74

0 .577 1.15 1.62 2.05 .467 .931 1.31 1.65
0.1 .559 1.10 1.53 1.92 .455 .897 1.25 1.56
0.2 .543 1.05 1.45 1.80 .444 .865 1.19 1.48
0.3 .527 1.00 1.37 1.68 .433 .834 1.14 1.40
0.4 .512 .962 1.30 1.57 .423 .804 1.09 1.33
0.5 .497 .920 1.22 1.46 .413 .776 1.04 1.25
0.6 .483 .881 1.16 1.36 .404 .748 .994 1.18
0.7 .470 .844 1.09 1.26 .394 .722 .949 1.12
0.8 .457 .808 1.03 1.17 .386 .697 .905 1.05
0.9 .445 .775 .970 1.08 .377 .673 .864 .993
1.0 .433 .743 .914 .994 .369 .650 .824 .934

*Unfilled entries in the table are given by the wide-column buckling formula, Kx = 1/L2. 
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Figure 1.  Sign convention for positive-valued stress resultants.

(a) Destabilizing loading system. (b) Subcritical loading system.
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Figure 2.  Mechanical loads in a plate fully restrained against thermal expansion or contraction caused by 
uniform heating or cooling.
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Figure 4. Critical temperature change versus plate-width-to-thickness ratio for simply supported and clamped
plates made of steel or aluminum material, fully restrained against thermal expansion and contraction, and sub-
jected to uniform heating.
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Figure 3. Buckling interaction curves for isotropic plates subjected to biaxial compression loads.  
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Figure 5. Critical temperature change for simply supported and clamped plates made of isotropic materials, fully
restrained against thermal expansion and contraction, and subjected to uniform heating. 
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Figure 6. Stiffness-weighted laminate thermal-expansion parameter  for laminates made of IM7/5260 material.
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Figure 7. Ratio of stiffness-weighted thermal-expansion parameters  and  for laminates made of IM7/5260
material.

Figure 8. Ratio of stiffness-weighted thermal-expansion parameters  and  for laminates made of IM7/5260
material.
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Figure 9. Stiffness-weighted laminate thermal-expansion parameter  for balanced and unbalanced laminates
with angle plies and unbalanced, unidirectional off-axis laminates made of IM7/5260 material (m = 1, 2, ...). 

Figure 10. Ratio of stiffness-weighted thermal-expansion parameters  and  for balanced and unbal-
anced laminates with angle plies and unbalanced, unidirectional off-axis laminates made of IM7/5260
material (m = 1, 2, ...). 
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Figure 11. Ratio of stiffness-weighted thermal-expansion parameters  and  for [(+θ)2m]s and [+θ2/0/90]s
unbalanced laminates made of IM7/5260  material (m = 1, 2, ...). 

Figure 12. Critical temperature change for simply supported laminates made of IM7/5260 material, fully
restrained against thermal expansion and contraction, and subjected to uniform heating.
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Figure 13. Critical temperature change for clamped laminates made of IM7/5260 material, fully restrained against
thermal expansion or contraction, and subjected to uniform heating.

Figure 14. Critical temperature change for simply supported and clamped angle-ply laminates made of IM7/5260
material (m = 1, 2, ...). 
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Figure 15. Critical temperature change for simply supported and clamped laminates with angle plies made of
IM7/5260 material (m = 1, 2, ...). 

Figure 16. Critical temperature change versus plate width for simply supported and clamped [(±45/0/90)m]s lam-
inates made of IM7/5260 material, fully restrained against thermal expansion and contraction, and subjected to
uniform heating.
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Figure 17. Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 
for [(±45/0/90)m]s laminates.

Figure 18. Effects of lamina material properties on parameter ratio  for [(±45/0/90)m]s laminates. 
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Figure 19. Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 
for [(±θ)m]s balanced, angle-ply laminates and [(+θ)2m]s unbalanced, unidirectional off-axis laminates.

Figure 20. Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 
for [(±θ)m]s balanced, angle-ply laminates and [(+θ)2m]s unbalanced, unidirectional off-axis laminates.

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

10

20

Boron-Aluminum

S-glass-epoxy

P-100/3502

Kevlar 49-epoxy

AS4/3502

AS4/3501-6 and IM7/PETI-5

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

     αα 1 =
t2 A 11αα x + A 12αα y + A 16αα xy

12 D11D22

Stiffness-weighted
laminate thermal-

expansion parameter,

     αα 1 ×× 106, / Fo

α̂1

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

10

50

Boron-Aluminum

S-glass-epoxy

P-100/3502

Kevlar 49-epoxy

AS4/3502

IM7/PETI-5

Boron-epoxy IM7/5260

y

x

Typical lamina fiber

θStiffness-weighted
laminate thermal-

expansion parameter,

20

30

40

     αα 2 ×× 106, / Fo

     αα 2 =
t2 A 12αα x + A 22αα y + A 26αα xy

12 D22

AS4/3501-6

α̂2



76

Figure 21. Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 
for [(+θ)2m]s unbalanced, unidirectional off-axis laminates.

Figure 22. Effects of lamina material properties on nondimensional flexural anisotropy parameter γ for [(+θ)2m]s
laminates (m = 1, 2, ...).
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Figure 23. Effects of lamina material properties on nondimensional flexural anisotropy parameter δ for [(+θ)2m]s
laminates (m = 1, 2, ...).

Figure 24. Flexural anisotropy parameters for angle-ply laminates made of IM7/5260 material. 
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Figure 25. Effects of orthotropy parameter β on buckling interaction curves for specially orthotropic plates
(γ = δ = 0) subjected to axial compression and transverse tension or compression loads.

Figure 26. Effects of orthotropy parameter β and load factor on buckling coefficient for specially orthotropic
plates (γ = δ = 0) subjected to axial compression and transverse tension or compression loads.
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Figure 27. Effects of orthotropy parameter β and load factor on buckling coefficient for specially orthotropic
plates (γ = δ = 0) subjected to axial compression and transverse tension or compression loads.

Figure 28. Effects of flexural orthotropy parameter β and flexural anisotropy parameters γ and δ on buckling
coefficients for simply supported plates subjected to axial compression and transverse tension or compres-
sion loads.
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Figure 29. Effects of flexural orthotropy parameter β and flexural anisotropy parameters γ and δ on buckling
coefficients for simply supported plates subjected to axial compression and transverse tension or compres-
sion loads.

Figure 30. Buckling interaction curves for specially orthotropic plates (γ = δ = 0) with β = 1 and subjected to axial
compression, transverse tension or compression, and shear loads.
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Figure 31. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 32. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 33. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.2) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 34. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.2) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 35. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.2) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 36. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.2) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 37. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ  = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 38. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ  = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 39. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 40. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.4) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 41. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.6) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 42. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.6) subjected to axial compression, transverse tension or compression, and shear
loads.
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Figure 43. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.6) subjected to axial compression, transverse tension or compression, and shear
loads.

Figure 44. Effects of orthotropy parameter β and load factors on buckling coefficient for simply supported, spe-
cially orthotropic plates (γ = δ = 0.6) subjected to axial compression, transverse tension or compression, and shear
loads.
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